背包DP问题

背包

01背包

简介:有 n n n 种物品,每种物品只有一个,每种品有一定的体积和价值。现有一个容量为 m m m 背包,求在不超过背包的容量的前提下,能装下的物品的最大总价值。
状态表示: f ( i , j ) f(i, j) f(i,j) 表示:从前 i i i 个物品中选取总容量不超过 j j j 的物品所组成的集合的最大值。
状态计数:每一个 f ( i , j ) f(i, j) f(i,j) 都能被划分成两集合:一个集合不包含第 i i i 个物品,此时它是由 f ( i − 1 , j ) f(i - 1, j) f(i1,j) 直接转移过来;第二个集合包含第 i i i 个物品,此时它是由 f ( i − 1 , j − v [ i ] ) f(i - 1, j - v[i]) f(i1,jv[i]) 加上 w [ i ] w[i] w[i] 转移过来。
#include <iostream>
#include <cstdio>
using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N];
int dp[N][N];
int main() {
    scanf("%d %d", &n, &m);
    for (int i = 1; i <= n; i++) scanf("%d %d", &v[i], &w[i]);
    for (int i = 1; i <= n; i++) 
        for (int j = 1; j <= m; j++) {
            dp[i][j] = dp[i-1][j];
            if (j >= v[i]) dp[i][j] = max(dp[i][j], dp[i-1][j-v[i]] + w[i]);
        }
    printf("%d\n", dp[n][m]);
    return 0;
}
DP优化:从状态计数的过程我们可以发现: f ( i , j ) f(i, j) f(i,j) 只由 f ( i − 1 , v ) f(i - 1, v) f(i1,v) ( 0 ≤ v < m ) (0 \leq v < m) (0v<m)转移过来,虽然第一维有 i i i , 但是转移的时候我们只用到了 2 2 2 。所以我们可以用滚动数组将第一维状态滚掉,优化成一维数组。但是这是一个01背包问题,所以第二重循环需要倒着枚举,避免已枚举的状态对现在这个状态产生影响。
#include <iostream>
#include <cstdio>
using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N];
int dp[N];
int main() {
    scanf("%d %d", &n, &m);
    for (int i = 1; i <= n; i++) scanf("%d %d", &v[i], &w[i]);
    for (int i = 1; i <= n; i++)
        for (int j = m; j >= v[i]; j--)
            dp[j] = max(dp[j], dp[j-v[i]] + w[i]);
    printf("%d\n", dp[m]);
    return 0;
}

完全背包

简介:有 n n n 种物品,每种物品都有无限个,每种品有一定的体积和价值。现有一个容量为 m m m 背包,求在不超过背包的容量的前提下,能装下的物品的最大总价值。

在这里插入图片描述
在这里插入图片描述

#include <iostream>
#include <cstdio>
using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N];
int dp[N][N];
int main() {
    scanf("%d %d", &n, &m);
    for (int i = 1; i <= n; i++) scanf("%d %d", &v[i], &w[i]);
    for (int i = 1; i <= n; i++)
        for (int j = 0; j <= m; j++)
            for (int k = 0; k * v[i] <= j; k++)
                dp[i][j] = max(dp[i][j], dp[i-1][j - k * v[i]] + k * w[i]);
    printf("%d\n", dp[n][m]);
    return 0;                
}
DP优化:第三层的循环是可以去掉的,数组的第一维也是可以同01背包一样滚掉的。由于每种物品都有无限个,所以 f ( i , j ) f(i, j) f(i,j) 可直接由 f ( i − 1 , j ) f(i - 1, j) f(i1,j) f ( i , v − v [ i ] ) f(i, v - v[i]) f(i,vv[i]) 转移过来,即可优化。
#include <iostream>
#include <cstdio>
using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N];
int dp[N];
int main() {
    scanf("%d %d", &n, &m);
    for (int i = 1; i <= n; i++) scanf("%d %d", &v[i], &w[i]);
    for (int i = 1; i <= n; i++)
        for (int j = v[i]; j <= m; j++)
           dp[j] = max(dp[j], dp[j-v[i]] + w[i]);
    printf("%d\n", dp[m]);
}

多重背包

简介:有 n n n 种物品,每种物品都有有限个,每种品有一定的体积和价值。现有一个容量为 m m m 背包,求在不超过背包的容量的前提下,能装下的物品的最大总价值。
状态计数:与朴素的完全背包一样
#include <iostream>
#include <cstdio>
using namespace std;
const int N = 110;
int n, m;
int v[N], w[N], s[N];
int dp[N][N];
int main() {
    scanf("%d %d", &n, &m);
    for (int i = 1; i <= n; i++) scanf("%d %d %d", &v[i], &w[i], &s[i]);
    for (int i = 1; i <= n; i++)
        for (int j = 0; j <= m; j++)
            for (int k = 0; k <= s[i] && k * v[i] <= j; k++)
                dp[i][j] = max(dp[i][j], dp[i-1][j-k*v[i]] + k * w[i]);
    printf("%d\n", dp[n][m]);
    return 0;
}
DP优化:二进制优化每种物品个数,即分解物品个数,然后根据01背包的方式求解。
#include <iostream>
#include <cstdio>
using namespace std;
const int N = 12000, M = 2010;
int n, m;
int v[N], w[N];
int dp[M];
int main() {
    scanf("%d %d", &n, &m);
    int cnt = 0;
    for (int i = 0; i < n; i++) {
        int a, b, c;
        scanf("%d %d %d", &a, &b, &c);
        int k = 1;
        while (k <= c) {
            ++cnt;
            v[cnt] = k * a;
            w[cnt] = k * b;
            c -= k;
            k <<= 1;
        }
        if (c) {
            ++cnt;
            v[cnt] = c * a;
            w[cnt] = c * b;
        }
    }
    n = cnt;
    for (int i = 1; i <= n; i++)
        for (int j = m; j >= v[i]; j--)
            dp[j] = max(dp[j], dp[j-v[i]] + w[i]);
    printf("%d\n", dp[m]);
    return 0;
}

分组背包

简介:有 n n n 类物品,每类物品中由若干种物品,每种物品只有1个,每种品有一定的体积和价值。现有一个容量为 m m m 背包,求在不超过背包的容量的前提下,能装下的物品的最大总价值。
#include <iostream>
#include <cstdio>
using namespace std;
const int N = 110;
int n, m;
int s[N], v[N][N], w[N][N];
int dp[N];
int main() {
    scanf("%d %d", &n, &m);
    for (int i = 1; i <= n; i++) {
        scanf("%d", &s[i]);
        for (int j = 1; j <= s[i]; j++)
            scanf("%d %d", &v[i][j], &w[i][j]);
    }
    for (int i = 1; i <= n; i++)
        for (int j = m; j >= 0; j--)
            for (int k = 1; k <= s[i]; k++)
                if (j >= v[i][k])
                    dp[j] = max(dp[j], dp[j-v[i][k]] + w[i][k]);
    printf("%d\n", dp[m]);
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值