使用pytorch,将 数据分为 训练:测试=8:2
划分数据集的图解
sklearn.model_selection.train_test_split 书写规范与参数含义
关于参数的含义
Parameters
*arrayssequence of indexables with same length / shape[0]
Allowed inputs are lists, numpy arrays, scipy-sparse matrices or pandas dataframes.
test_sizefloat or int, default=None
If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is set to the complement of the train size. If train_size is also None, it will be set to 0.25.
train_sizefloat or int, default=None
If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size.
random_stateint, RandomState instance or None, default=None
Controls the shuffling applied to the data before applying the split. Pass an int for reproducible output across multiple function calls. See Glossary.
shufflebool, default=True
Whether or not to shuffle the data before splitting. If shuffle=False then stratify must be None.
stratifyarray-like, default=None
If not None, data is split in a stratified fashion, using this as the class labels. Read more in the User Guide.
Returns
splittinglist, length=2 * len(arrays)
List containing train-test split of inputs.
New in version 0.16: If the input is sparse, the output will be a scipy.sparse.csr_matrix. Else, output type is the same as the input type.
这里举个例子
>>> import numpy as np
>>> from sklearn.model_selection import train_test_split
>>> X