大家好,我是写编程的木木。
ComfyUI 是 Stable Diffusion 的一个基于节点组装绘图流程的图形用户界面(GUI)。通过将不同的节点
连接在一起,你可以在 ComfyUI 中构建图像生成工作流
。一个完整的工作流看起来像下面这样:
ComfyUI 工作流的样子
ComfyUI 因为其极其灵活的可配置能力,使得它在开发者和艺术家中广泛使用开来,甚至大有超过 Automatic1111 WebUI 的势头。
1、ComfyUI 的优势
ComfyUI 能如此快的流行起来,意味着它相对竞品有着独特的优势:
-
1、轻量级:与其他功能齐全的 GUI(如 AUTOMATIC1111 WebUI)不同,ComfyUI 只加载必要的内容。这使得它内存使用量更低、生成速度更快。
-
2、灵活性:ComfyUI 有极其灵活的可配置能力。比如,你可以轻松地在单个工作流中生成两张具有不同 CFG 比例的图像并比较结果。
-
3、明确知道它在做什么:ComfyUI 会明确地显示它正在做什么。如果你对 Stable Diffusion 的工作原理有深入了解,你可以了解当前任务进行到哪个步骤、跑到什么进度了。
-
4、工作流易于分享:ComfyUI 的工作流可以保存为一张 PNG 图片或一个 JSON 文件,你可以很容易保存一个工作流并分享给其他人使用,让他们直接复用你的工作。
-
5、适合原型设计:ComfyUI 很适合开发者,你可以在一个工作流中进行原型设计,然后再对其进行编码。
-
6、更敏捷的迭代:ComfyUI 基于节点的系统允许更多的用户连接和分享工作流,开发也更加敏捷,可以更快的支持使用最新的技术和工具。AUTOMATIC1111 WebUI 团队在推出新功能时则采取了更谨慎的方法。
2、在 Windows 上安装 ComfyUI
在 Windows 上安装 ComfyUI,有两种选择:
-
1、直接下载独立压缩包
-
2、手动安装
如果你不是 ComfyUI 的开发者,建议使用第 1 种方案。方案 2 是为喜欢摆弄代码的人准备的。
这篇教程只介绍方案 1。
1)安装 7-Zip 解压缩软件
后面你会需要7-Zip软件来解压 ComfyUI 的 zip 文件,所以我们先安装好它。
可以在 7-Zip 官网[3] 下载它的安装文件,下载完成后,双击下载的 exe
文件,在弹框中点击 Install
即可在电脑上安装 7-Zip。
安装 7-Zip
2)下载 ComfyUI 独立版本
可以使用项目官方提供的下载链接来下载 ComfyUI:https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia.7z
下载完成后,右键点击文件 ComfyUI_windows_portable_nvidia_cu118_or_cpu.7z
,选择:显示更多选项
→ 7-Zip
→ 解压到此处
。
等待电脑解压完成后,应该会有一个名为 ComfyUI_windows_portable
的新文件夹,这就是 ComfyUI 项目。你可以将此文件夹移动到你喜欢的位置。
3)下载 Checkpoint 主模型
你需要一个 Checkpoint 主模型才能开始使用 ComfyUI。
你有两个选项:
-
(1) 下载一个模型
-
(2) 与其他 Stable Diffusion GUI(如 AUTOMATIC1111 WebUI)共享模型
随意下载任何 Checkpoint 主模型,将下载后的 Checkpoint 主模型放入文件夹:ComfyUI_windows_portable\ComfyUI\models\checkpoints
。
这里是 Stable Diffusion v1.5 模型的下载地址:https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt
4)启动 ComfyUI
如果你有Nvidia GPU:双击 run_nvidia_gpu.bat
启动 ComfyUI。
如果没有,也可以双击 run_cpu.bat
慢慢地运行 ComfyUI…
ComfyUI 应该会自动在你的浏览器中启动。
5)更新 ComfyUI
如果后面你需要更新 ComfyUI,双击运行 ComfyUI_windows_portable/update
目录下的 update_comfyui.bat
文件即可。
3、在 macOS 上安装 ComfyUI
在苹果电脑上安装 ComfyUI 略微复杂一点,需要你的电脑芯片是 M1 以上,并且需要 macOS 12.3 或更高版本才能支持 MPS 加速。
下面我们将在 macOS 的 python 虚拟环境中安装 ComfyUI。
1)安装 HomeBrew
Homebrew是Mac的包管理器。打开终端应用程序,粘贴以下命令,按回车。
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
2)安装依赖包
打开一个新的终端,运行以下命令来安装一些依赖包:
brew install cmake protobuf rust python@3.10 git wget
3)克隆 ComfyUI 代码
通过在终端运行以下命令将 ComfyUI 代码克隆到你的本地:
git clone https://github.com/comfyanonymous/ComfyUI
4)安装 ComfyUI
进入 ComfyUI 的目录,创建一个虚拟环境:
cd ComfyUI python -m venv venv
在虚拟环境中安装 PyTorch:
./venv/bin/pip install torch torchvision torchaudio
安装 ComfyUI 所需的依赖包:
./venv/bin/pip install -r requirements.txt
5)下载 Checkpoint 主模型
接下来,你需要一个 Checkpoint 主模型来运行 Stable Diffusion。
使用以下链接下载 v1.5 模型:https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt
下载完成后,将检查点模型放入文件夹:models/checkpoints
。
或者,运行以下命令下载模型到上面的文件夹:
wget -P models/checkpoints https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt
6)启动 ComfyUI
通过运行以下命令启动 ComfyUI:
./venv/bin/python main.py
7)更新 macOS 上的 ComfyUI
在 ComfyUI 文件夹中运行以下命令以更新 ComfyUI:
git pull
4、生成图像
第一次启动 ComfyUI 后,你应该可以看到默认的文本到图像的工作流,如下图所示:
ComfyUI 工作流
如果你没有看到,可以单击右侧面板上的 Load Default
以加载这个默认的工作流。
接下来我们来看如何使用 ComfyUI 来绘制一张图片:
1)选择一个模型
首先,在 Load Checkpoint
节点中选择一个 Stable Diffusion Checkpoint 主模型。
选择模型
这里单击模型名称以显示可用模型列表。如果节点太小,你可以使用鼠标滚轮或在触摸板上用两个手指捏合来放大和缩小。
如果单击模型名称没有反应,你可能没有安装模型或配置它以使用你在 AUTOMATIC1111 WebUI 项目中的现有模型。你需要先回到上面讲到的安装部分解决这个问题。
2)输入提示词和负向提示词
输入提示词和负向提示词
你应该可以看到两个标记为 CLIP Text Encode (Prompt)
的节点。在顶部的一个中输入你的提示词,在底部的一个中输入你的负向提示词。
3)生成图像
单击 Queue Prompt
运行工作流。稍等片刻后,你应该看到生成的第一张图像。
生成图像
4)和 AUTOMATIC1111 WebUI 共享模型文件
如果你的电脑上安装了 AUTOMATIC1111 WebUI,你应该在 AUTOMATIC1111 WebUI 和 ComfyUI 之间共享模型文件。否则,你的硬盘将变得非常满。
共享模型可以这样来配置:
将 ComfyUI_windows_portable/ComfyUI
目录下的 extra_model_paths.yaml.example
文件重命名为 extra_model_paths.yaml
。
然后在文件中更改下面这行:
base_path: path/to/stable-diffusion-webui/
将 path/to/stable-diffusion-webui/
替换为你实际的路径。例如:
base_path: C:\Users\USERNAME\stable-diffusion-webui
修改完成后,你需要重新启动 ComfyUI。如果配置正确,你应该通过单击 Load Checkpoint
节点中的 ckpt_name
字段看到模型的完整列表。
模型列表
你可以使用这种技术在 AUTOMATIC1111 WebUI 和 ComfyUI 之间共享 LoRA、Textual Inversions 等模型文件。
感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。
AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。
一、AIGC所有方向的学习路线
AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、AIGC必备工具
工具都帮大家整理好了,安装就可直接上手!
三、最新AIGC学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
若有侵权,请联系删除