【Stable Diffusion】图片高清化+面部修复+一键抠图,一些你不知道的事儿

说到后期处理板块,大家第一印象就是图像放大,快速且高效。但是今天要讲的后期处理当中,肯定还有一些是你不知道的事儿。

# 放大算法

首先是关于放大算法,如果大家用的都是秋叶大佬的整合包的话,算法总共应该就是这些。常用的就是“R-ESRGAN 4x+”做写实图片,“R-ESRGAN 4x+
Anime6B”做二次元图片。

但是经常去C站,copy一些别人的作品却老是发现他们用的放大算法是什么“4x-UltraSharp”之类的高级货。

那就是因为,这些高端的放大算法,你还没下载。

所以,我在这里整理了四款更厉害的放大算法,分别是:“4x-UltraSharp”、“8x_NMKD-
Superscale_150000_G”、“8x_NMKD-
Typescale_175k”、“16xPSNR”。并将它们放在了云盘里,大家下载之后,将这四款放大算法放入“……\sd-webui-
aki-v4.2\models\ESRGAN”这个路径之中,然后重启软件。

就可以看到这四款新的放大算法了。

我们以这张图作为例子来测试一下,这张图片现在分辨率是512*512。

我将这张图发送到后期处理,分别使用一个传统算法“Lanczos”、一个常用算法“R-ESRGAN 4x+ Anime6B”,和刚才下载的四个算法做一个对比。

图片太小,大家可能看不清细节,我直接来做一下总结。

传统放大算法Lanczos对原图没有任何优化,仅仅只是放大像素,直接pass。

曾经的王者“R-ESRGAN 4x+ Anime6B”表现蛮好的,放大之后,图片有了更多的细节和更清晰的轮廓。

但是和新晋放大器“4x-UltraSharp”比起来,还是弱了一些,“4x-UltraSharp”拥有更清晰的细节,而且没有过度锐化的部分。

随着前面数字的增加,8x、16x系列的放大器,拥有了更真实的处理细节,不仅仅只追求把人物还原得光滑好看,而是增加了很多噪点和毛孔细节,让人物看起来更加真实可信。

这四个新算法呢,正常情况下推荐“4x-UltraSharp”效果相当好,“8x_NMKD-
Superscale_150000_G”色调相当偏冷一些,“8x_NMKD-
Typescale_175k”,比4x的放大器皮肤噪点更多,如何取舍就取决于你需要多高的真实度了,至于“16xPSNR”,生图速度有点慢,效果相对于8x而言没有明显提升,不建议使用。

# 面部修复

我们接着来看一下这个GFPGAN面部修复,我找一张模糊人像来修复一下。

其他参数不变,直接将GFPGAN参数拉到1,就可以了。

看一下面部修复效果,宛如重生。当然这个功能只能修复脸部,所以头发、衣服、背景等没有变化。

# 背景去除

这个功能需要再安装一个插件REMBG,安装地址是https://github.com/AUTOMATIC1111/stable-diffusion-
webui-rembg.git 。

安装好之后重启,就有这个选项框了。

使用这张图测试一下,模型就选第一个u2net,直接点击生成。

抠图效果还是蛮不错的,边缘轮廓有些黑边,用时2.86秒。

如何去掉这个黑边呢,需要点击后面的Alpha matting,来调整一些参数。它们分别控制抠图边缘尺寸,前景阈值、背景阈值。

通过一系列测试,推荐给大家一套比较通用的参数设置——Erode size:6、Foreground threshold:143、Background
threshold:187。

通过这个参数,我们就能一键得到没有黑边的图像了。

另外,点击这个按钮,还可以直接生成蒙版。

这里还有一个专门做服装抠图的模型,可以一键识别出模特的服装。

这就非常方便我们做换装的处理了。

还有一个专门给动漫抠图的模型。

我们使用这张图测试一下。

抠图效果还是可以的,可能是背景比较复杂,用时19秒。

文章使用的大模型、Lora模型、SD插件、示例图片等,都已经上传到我整理的 Stable Diffusion 绘画资源中。有需要的小伙伴文末扫码自行获取。

针对各位AIGC初学者,这里列举了一条完整的学习计划,感兴趣的可以阅读看看,希望对你的学习之路有所帮助,废话不多说,进入正题:

目标应该是这样的:

第一阶段(30天):AI-GPT从入门到深度应用

该阶段首先通过介绍AI-GPT从入门到深度应用目录结构让大家对GPT有一个简单的认识,同时知道为什么要学习GPT使用方法。然后我们会正式学习GPT深度玩法应用场景。

-----------

  • GPT的定义与概述
  • GPT与其他AI对比区别
  • GPT超强记忆力体验
  • 万能GPT如何帮你解决一切问题?
  • GPT表达方式优化
  • GPT多类复杂应用场景解读
  • 3步刨根问底获取终极方案
  • 4步提高技巧-GPT高情商沟通
  • GPT深度玩法应用场景
  • GPT高级角色扮演-教学老师
  • GPT高级角色扮演-育儿专家
  • GPT高级角色扮演-职业顾问
  • GPT高级角色扮演-专业私人健身教练
  • GPT高级角色扮演-心理健康顾问
  • GPT高级角色扮演-程序UX/UI界面开发顾问
  • GPT高级角色扮演-产品经理
  • GPT高级技巧-游戏IP角色扮演
  • GPT高级技巧-文本冒险游戏引导
  • GPT实操练习-销售行业
  • GPT实操练习-菜谱推荐
  • GPT实操练习-美容护肤
  • GPT实操练习-知识问答
  • GPT实操练习-语言学习
  • GPT实操练习-科学减脂
  • GPT实操练习-情感咨询
  • GPT实操练习-私人医生
  • GPT实操练习-语言翻译
  • GPT实操练习-作业辅导
  • GPT实操练习-聊天陪伴
  • GPT实操练习-育儿建议
  • GPT实操练习-资产配置
  • GPT实操练习-教学课程编排
  • GPT实操练习-活动策划
  • GPT实操练习-法律顾问
  • GPT实操练习-旅游指南
  • GPT实操练习-编辑剧本
  • GPT实操练习-面试招聘
  • GPT实操练习-宠物护理和训练
  • GPT实操练习-吸睛爆款标题生成
  • GPT实操练习-自媒体爆款软件拆解
  • GPT实操练习-自媒体文章创作
  • GPT实操练习-高效写作推广方案
  • GPT实操练习-星座分析
  • GPT实操练习-原创音乐创作
  • GPT实操练习-起名/解梦/写诗/写情书/写小说
  • GPT提升工作效率-Word关键字词提取
  • GPT提升工作效率-Word翻译实现
  • GPT提升工作效率-Word自动填写、排版
  • GPT提升工作效率-Word自动纠错、建议
  • GPT提升工作效率-Word批量生产优质文章
  • GPT提升工作效率-Excel自动化实现数据计算、分析
  • GPT提升工作效率-Excel快速生成、拆分及合并实战
  • GPT提升工作效率-Excel生成复杂任务实战
  • GPT提升工作效率-Excel用Chat Excel让效率起飞
  • GPT提升工作效率–PPT文档内容读取实现
  • GPT提升工作效率–PPT快速批量调整PPT文档
  • GPT提升工作效率-文件批量创建、复制、移动等高效操作
  • GPT提升工作效率-文件遍历、搜索等高效操作
  • GPT提升工作效率-邮件自动发送
  • GPT提升工作效率-邮件自动回复
  • GPT接入QQ与QQ群实战
  • GPT接入微信与微信群实战
  • GPT接入QQ与VX多用户访问实战
  • GPT接入工具与脚本部署实战

第二阶段(30天):AI-绘画进阶实战

该阶段我们正式进入AI-绘画进阶实战学习,首先通过了解AI绘画定义与概述 ,AI绘画的应用领域 ,PAI绘画与传统绘画的区别 ,AI绘画的工具分类介绍的基本概念,以及AI绘画工具Midjourney、Stable Diffusion的使用方法,还有AI绘画插件和模板的使用为我们接下来的实战设计学习做铺垫。

  • -----------
    AI绘画定义与概述
  • AI绘画的应用领域
  • AI绘画与传统绘画的区别
  • AI绘画的工具分类介绍
  • AI绘画工具-Midjourney
  • AI绘画工具-百度文心一格
  • AI绘画工具-SDWebUI
  • AI绘画工具-Vega AI
  • AI绘画工具-微信中的AI绘画小程序
  • Midjourney学习-Discord账号的注册
  • Midjourney Bot界面讲解
  • Midjourney提示词入门
  • Midjourney高级提示词
  • Midjourney版本参数学解读
  • Midjourney功能参数
  • Midjourney上采样参数
  • AI绘画组合应用1-Midjourney + GPT
  • AI绘画组合应用2-Stable Diffusion + GPT
  • AI绘画组合应用3-AI绘画+ GPT +小红书
  • AI绘画组合应用4-AI绘画+ GPT +抖音
  • AI绘画组合应用5-AI绘画+ GPT +公众号
  • AI绘画组合应用6-AI绘画+ GPT + AI视频
  • AI绘画组合应用7-AI绘画+ GPT + 小说人物/场景
  • AI绘画设计-Logo设计
  • AI绘画设计-套用万能公式
  • AI绘画设计-引用艺术风格
  • AI绘画设计-GPT加速设计方案落地
  • AI绘画设计-Vega AI渲染线稿生成设计
  • AI绘画设计-摄影
  • AI绘画设计-头像设计
  • AI绘画设计-海报设计
  • AI绘画设计-模特换装
  • AI绘画设计-家具设计
  • AI绘画设计-潘顿椅设计
  • AI绘画设计-沙发设计
  • AI绘画设计-电视柜设计
  • AI绘画设计-包装设计的提示词构思

第三阶段(30天):AI-视频高段位

恭喜你,如果学到这里,你基本可以找到一份AIGC副业相关的工作,比如电商运营、原画设计、美工、安全分析等岗位;如果新媒体运营学的好,还可以从各大自媒体平台收获平台兼职收益。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • -----------
    AI视频定义与概述
  • AI视频制作-方案与创新
  • AI视频制作-各种工具实操
  • AI视频制作-美学风格(油画/插画/日漫/水墨)
  • AI视频制作-形象设定(人物形象服装/造型/表情)
  • AI视频画面特效处理
  • AI视频画面拼接
  • AI视频画面配音
  • AI视频画面包装
  • AI视频锁定人物逐一精修
  • 多种表情动作/情节
  • 动态模型转换-视频内部元素关键帧
  • 动态模型转换-图像整体运动
  • 动态模型转换-虚拟人
  • 动态模型转换-表面特效
  • AI自媒体视频-深问GPT,获取方案
  • AI自媒体视频-风格设置(诗歌/文言文等)
  • AI自媒体视频-各行业创意视频设计思路
  • AI视频风格转换
  • AI视频字数压缩
  • AI视频同类型衍生
  • AI视频Pormpt公式

第四阶段(20天):AI-虚拟数字人课程

  • -----------
    AI数字人工具简介
  • AI工作台界面功能展示及介绍
  • AI数字人任务确定
  • AI数字人素材准备
  • AI知识、语料的投喂
  • AI模型训练
  • AI训练成果展示及改进
  • AI数字人直播系统工具使用
  • AI人物在各平台直播
  • AI数字人在OBS平台直播

第五阶段(45天以上):AIGC-多渠道变现课程

该阶段是项目演练阶段,大家通过使用之前学习过的AIGC基础知识,项目中分别应用到了新媒体、电子商务等岗位能帮助大家在主流的新媒体和电商平台引流和带货变现。

-----------

  • AI-小红书引流变现
  • AI-公众号引流变现
  • AI-知乎引流变现
  • AI-抖音引流/带货变现
  • AI-写作变现
  • AI-B站引流变现
  • AI-快手引流变现
  • AI-百家号引流变现
  • AI-制作素材模板出售变现
  • AI-周边定制变现
  • AI-手机壳图案定制变现
  • AI-周边产品定制变现
  • AI-服装图案定制变现
  • AI-个性头像定制变现
  • AI-起号与知识付费变现
  • AI-实现淘宝销售变现

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名AIGC的正确特征了。

这份完整版的AIGC资料我已经打包好,需要的点击下方二维码,即可前往免费领取!

在这里插入图片描述

<think>嗯,用户想安装Stable Diffusion的DPM++ 2M Karras采样器。首先,我需要确认用户使用的是哪个平台,比如Automatic1111的WebUI还是ComfyUI。因为同的平台安装步骤可能同。 根据引用[4],Stable Diffusion的采样器通常集成在WebUI中,比如Automatic1111的版本。所以可能用户需要先确认他们的WebUI版本是否已经包含这个采样器。如果已经更新到最新版,可能DPM++ 2M Karras已经存在了。比如引用[1]提到DPM++2M Karras是其中一个系列,可能属于内置的采样器。 那用户可能需要先更新他们的WebUI。步骤大概是进入安装目录,运行git pull命令。如果有扩展管理器的话,可能还需要更新扩展。过,如果DPM++ 2M Karras属于核心的一部分,可能需要额外安装,只需要确认版本是否支持。 另外,引用[3]提到DPM-Solver++需要高阶求解器,可能某些实现需要额外的依赖库,比如xformers或者CUDA工具包。用户可能需要安装这些依赖项,但如果是通过WebUI安装的话,可能已经包含这些了。 也有可能用户遇到问题,比如采样器没有显示出来,这时候需要检查日志或者重新安装依赖。或者,如果是自定义的采样器,可能需要从GitHub下载代码,但根据引用[4],DPM++系列可能已经集成在主流UI中,需要额外安装。 总结步骤应该是:1. 更新WebUI到最新版;2. 检查可用采样器列表;3. 如果找到,可能检查扩展或重新安装依赖;4. 测试采样器是否正常工作。同时,注意用户是否需要特定的配置,比如Karras调度器,这在引用[2]中提到可能需要选择正确的调度方式。</think>### Stable Diffusion DPM++ 2M Karras 采样器安装指南 #### 1. 确认基础环境 - **Stable Diffusion WebUI 版本**:DPM++ 2M Karras 采样器通常集成在主流 WebUI 中(如 **Automatic1111** 或 **ComfyUI**)。需确保 WebUI 已更新至最新版本[^3][^4]。 - **依赖库检查**:若使用原生代码库,需安装 `xformers` 和 `torch` 等依赖,可通过以下命令更新: ```bash pip install -U xformers torch ``` #### 2. 安装/更新步骤 - **Automatic1111 WebUI**: 1. 进入 WebUI 根目录,运行更新命令: ```bash git pull ``` 2. 若使用扩展管理器,更新所有扩展: ```bash ./webui.sh --update-all-extensions ``` 3. 重启 WebUI,在采样器下拉菜单中检查是否出现 `DPM++ 2M Karras`[^1][^4]。 - **ComfyUI**: 1. 通过 `Manager` 更新自定义节点: ```bash git clone https://github.com/comfyanonymous/ComfyUI ``` 2. 安装 `DPM-Solver++` 相关节点(若需手动集成)。 #### 3. 验证与使用 - **采样器调用**:在生成图像的参数设置中,选择 `DPM++ 2M Karras`,建议参数: ```python { "steps": 20, # 推荐15-20步 "cfg_scale": 7.5, # 引导尺度(参考引用[3]) "scheduler": "karras" # Karras调度器[^2] } ``` - **性能测试**:生成图像时观察显存占用与速度,若出现异常可尝试 `--no-half` 启动参数。 #### 4. 常见问题解决 - **采样器未显示**:检查 WebUI 版本是否≥1.6.0,或尝试重装 `k-diffusion` 库: ```bash pip install -U k-diffusion ``` - **显存足**:降低图像分辨率或启用 `--medvram` 模式。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值