- 博客(907)
- 资源 (2)
- 收藏
- 关注
原创 【Python深度学习】零基础掌握Vision Layers 5种方法
通过本文的探索,我们对Pytorch中的视觉层有了更深入的了解。从PixelShuffle到UpsamplingBilinear2d等方法,我们看到了这些工具是如何在处理图像数据方面发挥作用的。通过具体的历史或现代案例,我们进一步理解了这些方法在解决实际问题上的潜力和应用。同时,通过实际的代码演示和数据可视化,我们得以直观地感受到深度学习在图像处理方面的强大能力。总的来说Pytorch的视觉层不仅是深度学习研究和应用的重要组成部分,更是连接理论与实际、技术与应用的桥梁。
2023-11-30 20:07:22
346
原创 【Python深度学习】零基础掌握Pytorch模型保存和运行
保存模型的原因很简单:训练一个好的模型需要时间和资源,尤其是当数据集很大或者模型结构复杂时。所以,一旦有了一个有效的模型,自然想保存下来,以便日后使用或继续训练。在深度学习的实践中,经常需要保存训练好的模型,以便之后可以重新加载使用,而不必每次都从头开始训练。在不需要改变模型结构的情况下,只需加载权重即可重现模型的性能。有时候模型的结构本身就包含了重要信息,比如在模型架构研究或者当想要将模型结构与别人分享,但不分享权重时。这不仅保存模型的结构,还保存其权重和训练配置(如优化器,损失函数等)。
2023-11-30 20:06:59
170
原创 【Python深度学习】零基础掌握Pytorch转换Transforms
通过这篇教程学习了如何使用ToTensor()和来处理的图像数据。就像学习一门新语言一样,一开始可能会觉得有点复杂,但是一旦掌握了基本的转换技巧,就能更轻松地与深度学习模型进行交流了。ToTensor()帮把图像转换成了计算机更容易理解的张量格式,就好比把文字从书本上转录到电脑上。而则更像是一个多功能的翻译器,无论有多奇怪的要求,它都能帮实现,比如把彩色图变成黑白图,或者进行其他更复杂的操作。掌握这些数据转换的技巧,对于学习和应用深度学习非常重要。
2023-11-29 14:15:36
222
原创 【Python深度学习】零基础掌握Pytorch自动微分autogradqs
通过了解了自动微分的基本原理,还深入探索了它在深度学习中的实际应用。从张量的基本操作到复杂的计算图,从计算简单的梯度到可视化整个神经网络,一步步揭开了自动微分的神秘面纱。无论是简单的张量操作还是复杂的神经网络训练,自动微分都在背后默默地发挥着作用。它让原本需要复杂数学推导的任务变得简单,能够专注于构建和优化的模型,而不是纠结于每一个数学公式。在深度学习的道路上就像是导航系统,指引正确地调整每一个参数,确保模型能够顺利学习和成长。
2023-11-29 14:15:33
544
原创 【Python深度学习】零基础掌握Linear Layers 4种方法
通过这篇文章的探索,可以看到Pytorch中的Linear Layers在数据处理和模型构建中扮演着关键角色。就像调整食谱中的配料一样,Linear Layers调整数据的特征,帮助模型更准确地学习和预测。实际案例和模拟数据的应用展示了这些工具在解决现实问题中的实用性和灵活性。无论是历史故事中的应用,还是现代生活中的实践,都展现了深度学习技术的广泛应用和深远影响。这些知识和技能的掌握,不仅对于学习深度学习技术本身重要,更为理解和应用这些技术于各种领域提供了实用的视角和方法。
2023-11-28 07:55:34
1047
原创 【Python深度学习】零基础掌握Distance Functions 2种方法
通过对Pytorch中和的深入探讨,本文展示了深度学习在量化和分析数据方面的强大能力。从生活中的实例出发不仅理解了这些函数的工作原理,还看到了它们在各个领域中的实际应用,如在线购物推荐、新闻分类等。深度学习不再是一个遥远和抽象的概念,而是已经深入到日常生活的各个角落。掌握这些工具,可以帮助我们更好地理解和利用数据,为决策提供支持,甚至开启新的技术应用领域。
2023-11-28 07:55:31
760
原创 【计算机视觉】使用 OpenCV 读取、显示和写入图像
通过本系列文章,我们学习了如何使用OpenCV进行一些基本的图像处理操作。首先,我们介绍了如何在Python环境中安装OpenCV,并验证安装。接着,我们探讨了如何使用imread()函数读取图像,imshow()函数显示图像,以及imwrite()函数保存图像。这些操作虽然基础,但构成了计算机视觉应用的核心。掌握这些技能后,你将能够更深入地探索OpenCV的高级功能,如图像转换、面部识别、对象检测等。希望这些简单易懂的介绍能帮助你在计算机视觉的旅程上迈出坚实的第一步。
2023-11-27 19:15:57
1122
原创 【计算机视觉】使用 OpenCV 进行对象跟踪
追踪器的选择需要综合考虑多个维度,包括性能准确性、跟踪速度、鲁棒性、特定场景的适用性、算法原理及其对软硬件的依赖性。例如Boosting追踪器虽然基本可用,但在复杂场景下的性能和速度均不理想。而MIL追踪器则在多数情况下表现良好,但对遮挡的处理能力有限。KCF追踪器在速度和准确性上取得了良好的平衡,成为许多场景下的优选。TLD追踪器在处理尺度和运动变化方面表现出色,但存在误报问题。针对特定的需求,如高速跟踪或精确跟踪,选择不同的追踪器显得尤为重要。
2023-11-27 19:15:49
1515
原创 【计算机视觉】使用 OpenCV 读写视频
通过本文的学习应该已经掌握了使用OpenCV进行视频读写的基本技能。从简单的视频文件读取到更高级的视频写入技术,我们已经一步步探索了这一领域的核心要素。此外还讨论了在视频读写过程中可能遇到的一些常见问题,例如文件路径错误、编解码器问题和帧大小或格式不匹配等,以及如何解决这些问题。掌握了这些知识将能够在自己的项目中更加自如地处理视频数据,无论是进行视频编辑、视频分析还是其他相关的计算机视觉任务。
2023-11-26 19:48:09
921
原创 【计算机视觉】使用 OpenCV 调整图像大小
有时候需要把图片“剪裁”到一定的大小,就像微信头像那样,不能太大也不能太小。这时候就需要调整图像的宽度和高度了。OpenCV 里有个resize()函数就是干这个的。调整图像大小,本质上是在改变图像中像素的数量。增加像素会使图像变大,减少像素则会使图像变小。OpenCV 的resize()函数可以根据你提供的新宽度和高度来重新排列和计算像素。假设你在做一个网站,需要所有上传的用户头像都是统一的大小。这时就可以使用这个功能,无论用户上传多大的图片都能把它调整到标准大小。# 自定义新的宽度和高度。
2023-11-26 19:47:59
763
原创 【计算机视觉】使用 OpenCV 注释图像
在本文中,我们详细探讨了如何使用Python中的OpenCV库进行基本的图像注释操作。我们讨论了用颜色线注释图像、在图像上画圆圈、用实心圆覆盖图像、用矩形注释图像、在图像上绘制椭圆、用轮廓和填充的半椭圆叠加图像以及使用不同的字体和样式对图像进行文本注释等多种方法。通过这些实用的例子,初学者不仅可以学会如何操作图像,还能理解图像处理在深度学习和人工智能领域中的重要性。无论是在科学研究、工业应用还是日常生活中,这些技能都极为宝贵。
2023-11-25 21:55:47
736
原创 【计算机视觉】OpenCV 中的颜色空间
在这篇文章中详细探讨了OpenCV中的不同色彩空间,如RGB、LAB等,并学习了如何使用这些色彩空间进行图像分割,包括最简单的方法和应用阈值进行分割的技术。我们还讨论了色彩空间在数据分析中的应用,以及它们在其他领域的一些有用应用。通过这篇文章不仅能够理解色彩空间的概念,还能掌握它们在实际项目中的应用方法。掌握色彩空间对于深入理解计算机视觉和图像处理领域是非常重要的,它将为你打开一扇通向更高级图像分析技术的大门。
2023-11-25 21:55:31
830
原创 【计算机视觉】使用 Mask RCNN 进行基于深度学习的对象检测和实例分割
结合现代深度学习技术和传统的计算机视觉方法,能够在复杂的真实世界场景中实现高效准确的对象检测和实例分割。这不仅为研究人员和工程师提供了强大的工具,也为广泛的应用领域开辟了新的可能性。随着技术的不断进步,我们期待在未来看到更多创新和应用的出现。
2023-11-24 20:26:07
1082
原创 【计算机视觉】使用 OpenCV 多目标跟踪 MultiTracker
在本文中详细探讨了使用 OpenCV 进行多目标跟踪的过程。从了解多目标跟踪的基本概念入手,接着深入到如何在 OpenCV 中使用类来追踪多个对象。通过这一过程不仅学习了如何创建单个跟踪器,还了解了如何初始化和更新,并在实际视频中展示跟踪结果。
2023-11-24 20:25:53
805
原创 【计算机视觉】基于深度学习对象跟踪 GOTURN
在本文中深入探讨了GOTURN这一基于深度学习的对象跟踪算法。从其基本原理到架构,从优势到应用场景,我们详细了解了这一技术的各个方面。GOTURN以其快速、高效、泛化能力强的特点,已经在多个领域展示了其巨大的应用潜力。尽管它也有一些局限性,如对训练数据的依赖和在复杂环境下的性能挑战,但GOTURN仍然是深度学习在对象跟踪领域的一个重要里程碑。提供了如何在Python中实现GOTURN的详细指导,包括代码实现和纠错技巧,使得读者能够将理论转化为实践。
2023-11-23 08:18:25
117
原创 解决CMake时 could not find any instance of Visual Studio
一般情况下我们在想使用opencv进行GPU调用的时候需要进行编译操作。这一般会遇见很多奇怪的问题,今天整体说一下操作步骤和配置方法。在进行CMake进行编译的时候如果出现这种情况的话,一般是Visual Studio没有进行安装或者是在安装的时候没有进行CMake的配置。这里有一个通用的解决办法。
2023-11-23 08:18:22
16
原创 【计算机视觉】使用 OpenCV 进行图像旋转和平移
通过本教程深入了解了如何使用 OpenCV 对图像进行旋转和平移,以及如何通过 Streamlit 创建一个简单的 Web 应用程序。我们学习了图像处理的基本概念,包括读取图像、计算图像尺寸和中心点、设置旋转和平移参数,以及应用这些变换来改变图像。在探索 Streamlit 的过程中了解了如何构建一个用户友好的界面,允许用户上传图像、选择旋转角度和平移量,并查看处理后的结果。这些技能不仅有助于增强你的技术工具箱,还能为你在图像处理、计算机视觉或相关领域的学习和探索奠定坚实的基础。
2023-11-22 08:07:42
112
原创 【计算机视觉】使用 OpenCV 裁剪图像
通过本篇博客的学习,读者应该能够掌握图像处理的基础知识,包括如何在Python中加载和处理图像。我们介绍了如何将一张大图像分割成小块,这在处理大型图像或进行细致的图像分析时特别有用。此外还探讨了图像处理的一些高级应用,例如使用预训练的深度学习模型进行图像识别。这些内容不仅涉及了基础知识,还拓展到了更为高级的应用,为读者提供了一个全面而深入的学习路径。
2023-11-22 08:07:39
131
原创 【Python深度学习】零基础掌握Pytorch数据集与数据加载器
如果有自己的数据,可能需要创建一个自定义的数据集。这听起来很高大上,但其实就是定义一个类,告诉程序怎么读取数据。import os有时,标准的数据集和数据加载器可能无法满足的需求。可以通过继承Dataset类来创建自定义的数据加载器。这提供了极大的灵活性,允许按照自己的需求来处理数据。# 初始化等方法...# 自定义获取数据的方法...经过这篇博客的学习相信对深度学习中的数据处理有了一个全新的认识。
2023-11-21 08:14:56
102
原创 【Python深度学习】零基础掌握Pytorch搭建神经网络
在PyTorch中自定义的神经网络模型通常是通过继承nn.Module类来创建的。这个类是所有神经网络模块的基类,它提供了很多有用的方法和属性。# 定义网络层# 定义数据流通过网络的方式return x在这个例子中,__init__方法用于初始化网络的层,而forward方法定义了数据如何通过这些层。这是PyTorch特有的一种方式,使得网络的设计既灵活又直观。定义一个简单的神经网络。这里使用之前讨论的来快速搭建。
2023-11-21 08:14:53
337
原创 【Python深度学习】零基础掌握Pytorch优化optimization
学习了如何优化深度学习模型,就像是把一辆普通的车调整成了一辆性能卓越的赛车。知道了怎样通过调整超参数、选择合适的损失函数和优化器来提升模型的性能。还学会了如何通过实验和调优来找到最适合“赛道”的配置。也讨论了如何避免“车祸”——也就是过拟合的问题,以及在的“赛车”跑完全程后如何保存它的状态,以备下次继续使用。希望这个教程能帮助在深度学习的道路上更加顺畅地“驾驶”,不管是直线加速还是过弯,都能游刃有余。
2023-11-20 12:35:55
78
原创 基于Real-CUGAN的动漫高清修复
Real-CUGAN是一个针对动漫图像的超分辨率模型。它使用了百万级别的动漫数据进行训练,结构与Waifu2x兼容。这意味着它能够将动漫图片的分辨率提升2倍、3倍甚至4倍,同时保持图像质量。2倍模型提供4种降噪选项和保守修复,而3倍和4倍模型提供2种降噪强度和保守修复。
2023-11-20 12:35:37
62
原创 【Python深度学习】零基础掌握Probability Distribution损失函数
深度学习领域中的和三种损失函数,展示了深度学习技术的多样性和专业性。在处理计数数据时表现出色,为事件发生频率的预测提供了强有力的支持。在连续数据预测中不仅强调准确性,还考虑到不确定性的估计,为结果提供了更全面的视角。而则在概率分布的匹配和生成模型中发挥其独特的作用,增强了模型在处理复杂概率任务时的能力。通过对这些损失函数的探讨,可以看到深度学习技术如何根据不同的数据类型和任务需求,选择合适的工具以优化性能。这些专业化的损失函数不仅丰富了深度学习的工具箱,也为解决特定问题提供了更加精准和有效的方法。
2023-11-19 08:45:00
19
原创 【Python深度学习】零基础掌握Sparse Layers 2种方法
和是 PyTorch 中处理文本数据的强大工具。通过,可以为每个单词分配一个独特的向量,将自然语言转换为计算机可以理解的数值形式。而则在此基础上增加了对文本片段的整体理解,通过计算单词集合的平均或总和向量,提供了对整个文本片段更深层次的理解。这两个工具在文本分析、情感分析、机器翻译等多个领域中都有广泛应用,是深度学习和自然语言处理领域的基石之一。
2023-11-19 08:30:00
13
原创 【Python深度学习】零基础掌握Multi-Classification损失函数
nn.NLLLoss以及。这些函数在多类分类、多标签分类和边缘优化等不同的深度学习任务中扮演着至关重要的角色。每种损失函数都有其独特的优势和局限,能够应对不同的挑战和需求。例如在多类分类任务中非常有效,而则适用于复杂的多标签问题。理解并正确选择损失函数,就像是为深度学习模型调校合适的性能调节器,不仅提高了模型的准确性,还增强了其鲁棒性和解释性。随着深度学习技术的不断进步,这些损失函数将继续在各种复杂和挑战性的应用中展现它们独特的价值。
2023-11-18 10:19:17
15
原创 【Python深度学习】零基础掌握Binary Classification损失函数
在二元分类任务中,nn.BCELoss和各展其长,提供了不同的优势和适用场景。nn.BCELoss作为基础的二元交叉熵损失函数,虽然简单但在某些情况下可能面临数值不稳定的问题。通过内置Sigmoid层解决了这一问题,提高了模型在极端概率值下的稳定性和性能。而则以其独特的方式平衡了鲁棒性和直观性,适用于需要平衡性能和解释性的场景。选择合适的损失函数对于优化模型性能和提高预测准确性至关重要。通过本文的介绍,读者可以根据自己的具体需求和数据特性,做出更加明智的选择,有效地提升二元分类任务的效果。
2023-11-18 10:19:14
23
原创 【Python深度学习】零基础掌握Transformer Layers 5种方法
通过深入探讨了PyTorch中的及其相关组件,本文演示了如何利用这些先进的深度学习工具处理和理解复杂的文本数据。通过结合历史故事的案例,展示了这些工具在现实生活中的潜在应用,从故事提取关键信息,到可视化展示故事特征,每一个步骤都揭示了深度学习在文本处理方面的强大能力。这不仅对历史学家、文学研究者有着重要意义,也为广泛的领域,包括医疗、商业、农业等,提供了新的视角和工具,展现了深度学习技术的广泛应用前景和巨大潜力。
2023-11-17 07:52:37
25
原创 【Python深度学习】零基础掌握Recurrent Layers 7种方法
通过本文的介绍,可以看到Pytorch中的Recurrent Layers在处理序列数据方面的强大能力。不论是在医疗、金融还是日常生活中的其他应用,这些层都能提供深入的洞见和预测。它们通过记忆和更新过去的信息,帮助我们理解和预测序列数据,从而在各个领域发挥重要作用。学习和使用这些工具,不仅能增强对数据的理解能力,也能在实际应用中提供巨大的帮助。
2023-11-17 07:52:34
13
原创 【Python机器学习】零基础掌握FeatureAgglomeration聚类
本次介绍的特征聚合(Feature Agglomeration)算法是一种有效的数据降维工具。通过将相关特征聚合成新的“合成”特征,该算法可以简化数据结构并提高分析效率。优点总结:特征聚合算法在数据降维、灵活性和可解释性方面表现出色,是数据分析中一个强有力的工具。优点名称对应描述说明数据降维能有效减少数据的维度,简化数据分析过程。灵活性提供多种参数选项,可适应不同类型和规模的数据。可解释性通过层次结构,易于理解特征间的相互关系。缓存支持支持结果缓存,可以提高重复运算的效率。
2023-11-16 09:56:52
12
原创 【Python深度学习】零基础掌握Pytorch Pooling layers nn.FractionalMaxPool方法
经过本文的探索,和在深度学习中的重要性和应用潜力显而易见。它们不仅提高了数据处理的效率和准确性,还打开了新的可能性,让我们能够更深入地理解和利用复杂的数据结构。无论是在二维空间还是三维空间,这些池化层都能够帮助我们更好地捕捉和理解数据中的关键信息。从历史故事改编的案例到实际应用的演示,和展示了它们在各个领域的广泛应用,如医疗成像、三维建模和更多。通过这些案例,我们可以看到深度学习技术如何跨越时空,影响着从古至今的各个领域。深度学习的旅程充满了惊喜和挑战,而和。
2023-11-16 09:56:49
14
原创 【Python深度学习】零基础掌握Pytorch Pooling layers nn.AdaptiveAvgPool方法
通过本文的探讨,了解到了和在Pytorch中的基本应用和它们在真实世界中的潜在用途。这些技术不仅在技术层面上优化了数据处理流程,更重要的是,它们为不同领域的实际问题提供了高效的解决方案。从音频信号的关键特征提取,到图像的精确识别,再到三维扫描数据的深入分析,这些池化技术的应用展示了深度学习在现代科技进步中的关键作用。无论是在医疗、娱乐还是安全领域,这些技术都能大幅提高信息处理的效率和准确性,推动相关领域向更高水平发展。
2023-11-15 09:15:13
26
原创 【Python深度学习】零基础掌握Pytorch Pooling layers nn.MaxUnpool方法
通过深入了解MaxUnpool1d、MaxUnpool2d和MaxUnpool3d,可以看到它们在深度学习中的重要性。这些层不仅仅是在卷积神经网络中的另一环节,它们是连接精确度和效率的桥梁,是数据还原和特征提取的重要工具。在应用案例中,看到了MaxUnpool层如何帮助重构三维数据,这在领域如医疗影像分析、空间数据处理等方面有着不可估量的价值。通过这些层,PyTorch不仅仅是一个强大的深度学习框架,更是一个能够帮助科研人员和工程师们更精确地理解和操作数据的工具。
2023-11-15 09:15:11
297
原创 【Python深度学习】零基础掌握Pytorch Convolution Layers nn.Fold方法
通过本文的探讨,不仅深入了解了nn.Unfold和nn.Fold在PyTorch中的工作原理和应用实例,还揭示了它们在现代深度学习中的重要性。这些高级功能弥补了传统卷积网络在处理复杂数据时的不足,为开发更加精准和高效的神经网络模型提供了可能。未来,随着深度学习技术的不断进步和发展,这类工具的应用范围和效能都有望得到进一步的扩展和提升。这将推动整个人工智能领域向着更加高效、智能的方向迈进,为人类的科技进步贡献力量。
2023-11-14 14:51:06
16
原创 【Python深度学习】零基础掌握Pytorch Convolution Layers nn.LazyConvTranspose方法
通过本文的深入探讨,对PyTorch中的, 和模块有了全面的了解。从它们的基本原理到在实际案例中的应用,看到了这些模块如何成为构建高效、强大深度学习模型的关键。它们在处理图像、视频、甚至是三维数据时展现出的灵活性和效能,证明了深度学习在多个领域的巨大潜力。希望这篇文章能激发对深度学习技术的兴趣,并在研究和开发工作中发挥实际作用。
2023-11-14 14:51:04
23
原创 【Python深度学习】零基础掌握Pytorch Convolution Layers nn.LazyConv方法
在当今快速发展的深度学习领域,卷积神经网络(CNN)已成为一种革命性的工具,广泛应用于图像处理、视频分析、自然语言处理等多个领域。随着技术的不断进步,不断有新的结构和模块被提出以优化性能和效率。和。这些模块代表了卷积神经网络中的最新进展,并在实际应用中展现出了巨大的潜力。从的基础概念入手将探索其内部工作机制和典型用途。转向更为复杂的,分析其在图像处理等领域的应用实例。的探讨将进入三维数据处理的世界,展示其在医学成像、三维建模等领域的实际应用案例。
2023-11-14 14:51:01
19
原创 【Python深度学习】零基础掌握Pytorch Convolution Layers nn.ConvTranspose方法
通过对 nn.ConvTranspose1d, nn.ConvTranspose2d, 和 nn.ConvTranspose3d 的详细解析及其应用案例的探讨,可以看到逆卷积层在神经网络中的重要性以及它们在不同维度数据处理上的多样性和灵活性。这些层不仅在图像重建、语音合成等领域发挥着至关重要的作用,而且对于理解和优化深度学习模型的整体结构和功能也至关重要。随着技术的不断进步和创新应用的出现,逆卷积层无疑将继续在人工智能领域扮演重要角色,引领新的技术变革和发展趋势。
2023-11-14 14:50:57
14
原创 【Python深度学习】零基础掌握Pytorch Convolution Layers nn.Conv方法
在人工智能的奇妙世界中,深度学习已经成为推动技术进步的核心力量。特别是在计算机视觉和语音识别等领域,深度学习模型,尤其是卷积神经网络(CNN),已经成为了不可或缺的工具。本文将引导深入了解卷积神经网络中最关键的组成部分:卷积层。将从最基本的一维卷积层(nn.Conv1d)开始,逐步深入到更复杂的二维(nn.Conv2d)和三维卷积层(nn.Conv3d),并通过解析和应用案例来阐明这些技术的重要性和实用性。
2023-11-14 14:50:54
12
原创 【Python深度学习】零基础掌握Pytorch Global Hooks For Module全局模具钩子
通过对 PyTorch Global Hooks 的探索,可以发现它们如何为深度学习的精细工艺增添了一层保护和效率。就像一位工匠精心雕刻他的作品,这些钩子让模型开发者能够精确地监控和调整训练过程中的每个细节。从前置钩子到后置钩子,从参数注册到模块和缓冲区的细微管理,这些工具不仅增加了模型性能的可预测性,还提供了深入洞察,使开发者能够更好地理解和优化他们的模型。Global Hooks 在深度学习中的作用不可小觑。它们是那些寻求在模型性能和准确性方面达到新高度的开发者和研究人员的重要工具。
2023-11-13 18:56:12
16
原创 【Python深度学习】零基础掌握Pytorch Containers容器
可以看到 PyTorch 中的容器如何使深度学习模型的构建变得更加有序和高效。就像一个精心组织的工具箱,这些容器帮助开发者在复杂的模型构建过程中保持条理清晰。无论是Sequential的有序排列、ModuleList和ModuleDict的灵活组织,还是和的细致管理,每个容器都以其独特的方式支持了模型的构建和运行。理解并运用这些容器,不仅可以提升编码效率,还能增强模型的可读性和可维护性。在深度学习的旅程中,掌握这些工具无疑是迈向成功的重要一步。
2023-11-13 18:56:00
405
原创 解决matplotlib绘图中文字符显示问题
在使用python进行数据可视化操作的时候经常会遇见中文字符无法显示的问题,一般来说对于编程能力比较差的数据分析师来说比较头疼,这里介绍几种处理方法。
2023-11-10 10:50:24
28
arcface-checkpoint.tar
2023-04-11
550000-net-G.pth
2023-04-11
antelope.rar
2023-04-11
checkpoints.rar
2023-04-11
79999-iter.rar
2023-04-11
《Python搭建QQ聊天机器人极简教程》配置文件
2022-11-11
数据集《发掘潜在用户利用xgboost进行产品营销响应预测》
2022-10-16
数据集《使用LSTM模型进行产品销售额的预测》
2022-10-16
数据集《使用机器学习进行客户预流失与否的方法》
2022-10-16
数据集《使用机器学习进行客户终身价值和RFM模型分析》
2022-10-16
数据集《使用机器学习预测客户的下一个购买日是哪一天》
2022-10-16
数据集《通过运营技能地图使用Python整理用户指标及订单跟踪》
2022-10-16
数据集《发掘潜在用户利用xgboost进行产品营销响应预测》
2022-10-16
《PyTorch深度学习Hotel-ID打击人口贩卖》脚本
2022-09-20
《10种流行的机器学习算法进行泰坦尼克幸存者分析》脚本与数据
2022-09-20
ffmpeg.rar
2020-08-24
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人