转:[译] Linux 异步 I_O 框架 io_uring:基本原理、程序示例与性能压测(2020)

译者序

本文组合翻译了以下两篇文章的干货部分,作为 io_uring 相关的入门参考:

io_uring 是 2019 年 Linux 5.1 内核首次引入的高性能 异步 I/O 框架,能显著加速 I/O 密集型应用的性能。 但如果你的应用已经在使用 传统 Linux AIO 了,并且使用方式恰当, 那 io_uring 并不会带来太大的性能提升 —— 根据原文测试(以及我们 自己的复现),即便打开高级特性,也只有 5%。除非你真的需要这 5% 的额外性能,否则 切换io_uring 代价可能也挺大,因为要 重写应用来适配 io_uring(或者让依赖的平台或框架去适配,总之需要改代码)。

既然性能跟传统 AIO 差不多,那为什么还称 io_uring 为革命性技术呢?

  1. 它首先和最大的贡献在于:统一了 Linux 异步 I/O 框架

    • Linux AIO 只支持 direct I/O 模式的存储文件 (storage file),而且主要用在数据库这一细分领域
    • io_uring 支持存储文件和网络文件(network sockets),也支持更多的异步系统调用 (accept/openat/stat/...),而非仅限于 read/write 系统调用。
  2. 设计上是真正的异步 I/O,作为对比,Linux AIO 虽然也 是异步的,但仍然可能会阻塞,某些情况下的行为也无法预测;

    似乎之前 Windows 在这块反而是领先的,更多参考:

  3. 灵活性和可扩展性非常好,甚至能基于 io_uring 重写所有系统调用,而 Linux AIO 设计时就没考虑扩展性。

eBPF 也算是异步框架(事件驱动),但与 io_uring 没有本质联系,二者属于不同子系统, 并且在模型上有一个本质区别:

  1. eBPF 对用户是透明的,只需升级内核(到合适的版本),应用程序无需任何改造
  2. io_uring 提供了新的系统调用和用户空间 API,因此需要应用程序做改造

eBPF 作为动态跟踪工具,能够更方便地排查和观测 io_uring 等模块在执行层面的具体问题。

本文介绍 Linux 异步 I/O 的发展历史,io_uring 的原理和功能, 并给出了一些程序示例性能压测结果(我们在 5.10 内核做了类似测试,结论与原文差不多)。

另外,Ceph 已经支持了 io_uring。我们对 kernel 5.10 + ceph 15.x 的压测显示, bluestore 打开 io_uring 优化之后,

  • 吞吐(iops)提升 20%~30%,同时
  • 延迟降低 20~30%

Ceph 关于 io_uring 的资料非常少,这里提供一点参考配置:

$ cat /etc/ceph/ceph.conf
[osd]
bluestore_ioring = true
...

确认配置生效(这是只是随便挑一个 OSD):

$ ceph config show osd.16 | grep ioring
bluestore_ioring                       true                                            file

由于译者水平有限,本文不免存在遗漏或错误之处。如有疑问,请查阅原文。

以下是译文。

很多人可能还没意识到,Linux 内核在过去几年已经发生了一场革命。这场革命源于 两个激动人心的新接口的引入:eBPF 和 io_uring。 我们认为,二者将会完全改变应用与内核交互的方式,以及 应用开发者思考和看待内核的方式

本文介绍 io_uring(我们在 ScyllaDB 中有 io_uring 的深入使用经验),并略微提及一下 eBPF。

1 Linux I/O 系统调用演进

1.1 基于 fd 的阻塞式 I/O:read()/write()

作为大家最熟悉的读写方式,Linux 内核提供了基于文件描述符的系统调用, 这些描述符指向的可能是存储文件(storage file),也可能是 network sockets

ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);

二者称为阻塞式系统调用(blocking system calls),因为程序调用 这些函数时会进入 sleep 状态,然后被调度出去(让出处理器),直到 I/O 操作完成:

  • 如果数据在文件中,并且文件内容已经缓存在 page cache 中,调用会立即返回
  • 如果数据在另一台机器上,就需要通过网络(例如 TCP)获取,会阻塞一段时间;
  • 如果数据在硬盘上,也会阻塞一段时间。

但很容易想到,随着存储设备越来越快,程序越来越复杂, 阻塞式(blocking)已经这种最简单的方式已经不适用了。

1.2 非阻塞式 I/O:select()/poll()/epoll()

阻塞式之后,出现了一些新的、非阻塞的系统调用,例如 select()poll() 以及更新的 epoll()。 应用程序在调用这些函数读写时不会阻塞,而是立即返回,返回的是一个 已经 ready 的文件描述符列表

img

但这种方式存在一个致命缺点:只支持 network sockets 和 pipes —— epoll() 甚至连 storage files 都不支持。

1.3 线程池方式

对于 storage I/O,经典的解决思路是 thread pool: 主线程将 I/O 分发给 worker 线程,后者代替主线程进行阻塞式读写,主线程不会阻塞。

img

这种方式的问题是线程上下文切换开销可能非常大,后面性能压测会看到。

1.4 Direct I/O(数据库软件):绕过 page cache

随后出现了更加灵活和强大的方式:数据库软件(database software) 有时 并不想使用操作系统的 page cache, 而是希望打开一个文件后,直接从设备读写这个文件(direct access to the device)。 这种方式称为直接访问(direct access)或直接 I/O(direct I/O),

  • 需要指定 O_DIRECT flag;
  • 需要应用自己管理自己的缓存 —— 这正是数据库软件所希望的;
  • zero-copy I/O,因为应用的缓冲数据直接发送到设备,或者直接从设备读取。

1.5 异步 IO(AIO)

前面提到,随着存储设备越来越快,主线程和 worker 线性之间的上下文切换开销占比越来越高。 现在市场上的一些设备,例如 Intel Optane延迟已经低到和上下文切换一个量级(微秒 us)。换个方式描述, 更能让我们感受到这种开销: 上下文每切换一次,我们就少一次 dispatch I/O 的机会

因此,Linux 2.6 内核引入了异步 I/O(asynchronous I/O)接口, 方便起见,本文简写为 linux-aio。AIO 原理是很简单的:

  • 用户通过 io_submit() 提交 I/O 请求,
  • 过一会再调用 io_getevents() 来检查哪些 events 已经 ready 了。
  • 使程序员能编写完全异步的代码

近期,Linux AIO 甚至支持了 epoll():也就是说 不仅能提交 storage I/O 请求,还能提交网络 I/O 请求。照这样发展下去,linux-aio 似乎能成为一个王者。但由于它糟糕的演进之路,这个愿望几乎不可能实现了。 我们从 Linus 标志性的激烈言辞中就能略窥一斑

Reply to: to support opening files asynchronously

So I think this is ridiculously ugly.

AIO is a horrible ad-hoc design, with the main excuse being “other, less gifted people, made that design, and we are implementing it for compatibility because database people — who seldom have any shred of taste — actually use it”.

— Linus Torvalds (on lwn.net)

首先,作为数据库从业人员,我们想借此机会为我们的没品(lack of taste)向 Linus 道歉。 但更重要的是,我们要进一步解释一下为什么 Linus 是对的:Linux AIO 确实问题缠身,

  1. 只支持 O_DIRECT
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值