好久没写了,最近恰好有时间,就把简单的排序算法实现一遍,复习一下吧。
1. 插入排序
基本思想:假设有a1,a2,a3,a4;且a4前面的a1
void insert_sort(int a[],int l)
{
int i,j,temp;
for(i=1;i<l;i++)
{
temp=a[i];
for(j=i-1;j>=0&&temp<a[j];j--)
{
a[j+1]=a[j];//temp小于一次就往后挪一位
}
a[j+1]=temp;//此时temp正好不小于a[j],则temp找到了该放的位置
}
}
完整代码:
#include<iostream>
using namespace std;
void insert_sort(int a[],int l)
{
int i,j,temp;
for(i=1;i<l;i++)
{
temp=a[i];
for(j=i-1;j>=0&&temp<a[j];j--)
{
a[j+1]=a[j];//temp小于一次就往后挪一位
}
a[j+1]=temp;//此时temp正好不小于a[j],则temp找到了该放的位置
}
}
print_arr(int b[],int length)
{
for(int k=0;k<length;k++)
{
cout<<b[k];
}
}
int main()
{
int array[]={2,4,1,9,3,8,7,5,6,10,9};
int len=sizeof(array)/sizeof(0);
print_arr(array,len);
cout<<endl;
insert_sort(array,len);
print_arr(array,len);
return 0;
}
- shell排序
基本思想:shell排序是在直接插入排序的基础上建立的一种排序算法,插入排序在要排序的元素极多时效率极差,假设要对a10000排序,则它最坏情况下必须和前面的10000个数进行比较,前挪10000次;此时效率是极差的。而shell排序的改进之处在于使用一个分量如1000,先把10000个数分成10组,每组在进行插入排序,这样比较和挪动的次数为原来的1/10,
然后在减小分量为100,此时10000个数被分成100组,对这100组再进行插入排序。再减小分量,重复之 ,知道分量为1,此时在进行插入排序,与直接插入排序算法不同的是,此时的大部分元素都排好序,而且未排好序的元素需要插入的跨度不是很大,如a10000也许只需和a9999比较一次就可以插入了。
#include<iostream>
using namespace std;
void shell_sort(int a[],int l)
{
int i,j,temp;
int h;
for(h=l/2;h>=1;h=h/2)//处理分量,逐渐减小 注意这里h不能写成h>0,那样会变成死循环
{
for(i=h;i<l;i=i+h)//这里就是插入排序
{
temp=a[i];
for(j=i-h;j>=0&&temp<a[j];j=j-h)//如果有100个数排序的话,这里插入排序的对象就是a[0],a[50],a[100]
{
a[j+h]=a[j];
}
a[j+h]=temp;
}
}
}
void print_arr(int b[],int length)
{
for(int k=0;k<length;k++)
{
cout<<b[k];
}
cout<<endl;
}
int main()
{
int array[]={7,3,1,2,4,5,9,8,10,6};
int len=sizeof(array)/sizeof(0);
cout<<"shell排序前:\n";
print_arr(array,len);
shell_sort(array,len);
cout<<"shell排序后:\n";
print_arr(array,len);
return 0;
}
- 快速排序
主要思想:使用一个partition函数处理数组,此函数的作用是选出一个随机数,把数组中小于这个随机数的元素都放到此元素的左边,把数组中大于此元素的值都放到此元素的右边,再把这个元素放到该放的位置。Quick_sort()函数里面递归调用partition()函数。快速排序是不稳定的排序,最好时间复杂度为O(nlogn),最坏时间复杂度为O(n^2)。
#include<iostream>
#include<time.h>
using namespace std;
int RandomInRange(int a,int b)//使用c++ rand()获取随机数必须结合srand(time(NULL)),rand()是依靠初始化值产生随机数
{
if(b>a)
{
srand(time(NULL)); //而srand(time(NULL))初始化初始值,使每次产生的随机数不一样
return a+rand()%(b-a+1);//产生a~b之间的随机数
}
}
void swap(int *a,int *b)//交换
{
int temp;
temp=*a;
*a=*b;
*b=temp;
}
int partition(int data[],int length,int start,int end)//关键算法,使得元素按a1,a2,a3,a4...small...an-2,an-1,an排列,返回small的位置small大于之前的元素,小于之后的元素
{
if(data==NULL||length<=0||start<0||end>length)
{
cout<<"输入错误!"<<endl;
}
int index=RandomInRange(start,end);//产生随机数
swap(&data[index],&data[end]);
int small=start-1;
for(int i=start;i<end;i++)
{
if(data[i]<data[end])
{
++small;
if(small!=i)//i走到small前面的时候,i>small,需要交换,使得small依次排列
{
swap(&data[i],&data[small]);
}
}
}
++small;
swap(&data[small],&data[end]);
return small;
}
void quick_sort(int data[],int length,int start,int end)//递归排序
{
if(start==end)//递归结束条件
{
return;
}
int index=partition(data,length,start,end);
if(index>start)
{
quick_sort(data,length,start,index-1);
}
if(index<end)
{
quick_sort(data,length,index+1,end);
}
}
print_arr(int b[],int len)//打印
{
for(int k=0;k<len;k++)
{
cout<<b[k];
}
cout<<endl;
}
int main()
{
int array[]={2,3,1,4,5,10,9,7,8,6};
int len=sizeof(array)/sizeof(array[0]);
int start=0;
int end=start+len-1;
cout<<"快速排序前的元素为:"<<endl;
print_arr(array,len);
quick_sort(array,10,0,9);
cout<<"快速排序后的元素为:"<<endl;
print_arr(array,len);
return 0;
}
四.选择排序
基本思想:先假设第一个元素有序,然后把2到n-1个元素依次和第一个元素比较,如果小于第一个元素则交换之,此时第一个元素已经排好序了,然后在排第二个元素,把3到n-1个元素和第二个元素比较,如果小于则交换之。个人感觉这种方法比较笨,时间复杂度为O(n^2),但是比较稳定。
#include<iostream>
using namespace std;
void swap(int &a,int &b)
{
a=a^b;
b=b^a;
a=a^b;
}
void select_sort(int a[],int l)
{
for(int i=0;i<l;i++)
{
int temp=a[i];
for(int j=i+1;j<l;j++)
{
if(a[j]<temp)
swap(a[j],temp);
}
a[i]=temp;
}
}
void print_arr(int array[],int length)
{
for(int k=0;k<length;k++)
{
cout<<array[k];
}
cout<<endl;
}
int main()
{
int array[]={6,4,2,3,1,11,7,8,5,10,9};
int len=sizeof(array)/sizeof(array[0]);
cout<<"选择排序前的元素:\n";
print_arr(array,len);
select_sort(array,len);
cout<<"选择排序后的元素:\n";
print_arr(array,len);
return 0;
}
五.冒泡排序
相邻的两个数比较,如a[j+1]
#include<iostream>
using namespace std;
void swap(int &a,int &b)
{
a=a^b;
b=b^a;
a=a^b;
}
void bubble_sort(int a[],int l)
{
for(int i=0;i<l;i++)
{
for(int j=0;j<l;j++)
{
if(a[j+1]<a[j])
{
swap(a[j+1],a[j]);
}
}
}
}
print_arr(int b[],int length)
{
for(int k=0;k<length;k++)
{
cout<<b[k];
}
cout<<endl;
}
int main()
{
int array[]={2,1,3,5,4,6,8,7,9,10};
int len=sizeof(array)/sizeof(array[0]);
cout<<"冒泡排序前的元素:\n";
print_arr(array,len);
bubble_sort(array,len);
cout<<"冒泡排序后的元素为:\n";
print_arr(array,len);
return 0;
}
6.归并排序
主要思想:对于一个给定序列进行归并排序,借助一个数组temp[],先把这个序列递归地分成两两一组(二路归并),比较之,小的结果存放在temp[]中,再递归回到上一层,再比较。也许这样说你还是不懂,那就别看上面的,来看下面这个图。结合代码来看这个图更容易理解。
#include<iostream>
#define N 100
using namespace std;
typedef int DataType;
//合并data[begin...mid]和data[mid+1.end]到temp[begin,end]中,然后复制到data[begin,end]中
void merge(DataType *data,DataType *temp,int begin,int mid,int end)
{
int i,j,k;
for(i = begin,j=mid+1,k = begin;i<=mid&&j<=end;k++)
{
if(data[i]<=data[j])
temp[k] = data[i++];
else
temp[k] = data[j++];
}
if(i<=mid)
while(i<=mid)
temp[k++] = data[i++];
else
while(j<=end)
temp[k++] = data[j++];
for(i=begin;i<=end;i++)
data[i] = temp[i];
}
//归并排序
void Msort(DataType *data,DataType *temp,int begin,int end)
{
if(begin==end)
data[begin] = data[begin];
else
{
int mid = (begin+end)/2;
Msort(data,temp,begin,mid);
Msort(data,temp,mid+1,end);
merge(data,temp,begin,mid,end);
}
}
print_arr(DataType arr[],DataType len)
{
for(int k=0;k<len;k++)
{
cout<<arr[k];
}
cout<<endl;
}
int main()
{
//data存储原数据和排序后的数据,temp为辅助数据
DataType data[N],temp[N];
int n;
cout<<"请输入元素个数:";
cin>>n;
int i;
cout<<"请输入待排序的元素:"<<endl;
for(i=0;i<n;i++)
cin>>data[i];
cout<<"归并排序前的元素:"<<endl;
print_arr(data,n);
Msort(data,temp,0,n-1);
cout<<"归并排序后的元素:"<<endl;
print_arr(data,n);
system("pause");
return 0;
}
7.关于对的理解和堆排序
关于队的理解这篇博客写的很详细:http://blog.csdn.net/morewindows/article/details/6709644/
我总结关于堆主要有以下几点需要注意:
1. 一般都用数组来表示堆,i结点的父结点下标就为(i – 1) / 2。它的左右子结点下标分别为2 * i + 1和2 * i + 2。
2. 结点插入,插入结点的时先把瑶插入的结点插入到堆的最下面(数组最后一个元素),然后就是一个向上调整的过程,涉及函数是MinHeapFixup()。
3. 结点删除,结点删除时,规定总是删除堆顶元素,所以删除a[0],然后把最后一个元素放到a[0],后面就是一个向下的调整过程,对应的函数MinHeapFixdown()。
例如要把数组a[]={9,12,17,30,50,20,60,65,4,49},堆化,从第一个非叶子结点向下调整。
#include<iostream>
using namespace std;
swap(int *a,int *b)
{
*a=*a^*b;
*b=*b^*a;
*a=*a^*b;
}
//建立堆结点
//新加入i结点,其父结点为(i-1)/2
//插入一个结点,总是先把他放到最后,所以他是一个向上调整的过程
void MinHeapFixup(int a[],int i)
{
int j,temp;
temp=a[i];
j=(i-1)/2; //父结点
while(j>=0&&i!=0)
{
if(a[j]<temp) //如果父结点小于当前结点,则此节点不用调整
break;
a[i]=a[j]; //父结点大于当前结点,把父结点和当前结点交换
i=j; //更新当前结点的位置
j=(i-1)/2; //更新当前结点的父结点的位置
}
a[i]=temp;
}
void MinHeapAddNumber(int a[],int n,int nNum)
{
a[n]=nNum; //插入一个结点,先把他放到最后,然后再向上调整
MinHeapFixup(a,n);
}
//删除堆结点
// 从i节点开始调整,n为节点总数 从0开始计算 i节点的子节点为 2*i+1, 2*i+2
//堆的删除总是删除a[0],然后把最偶一个结点放到a[0],最后就向下调整就行了
void MinHeapFixdown(int a[],int i,int n)
{
int j,temp;
temp=a[i];
j=2*i+1;
while(j<n)
{
if(j+1<n&&a[j+1]<a[j]) //再左右孩子中找到最小的
j++;
if(a[j]>temp)
break;
a[i]=a[j]; //向下调整
i=j;
j=2*i+1;
}
a[i]=temp;
}
void MinHeapDeleteNumber(int a[],int n)
{
swap(a[0],a[n-1]); //删除第一个元素 ,把最后一个元素放到第一个元素的位置
MinHeapFixdown(a,0,n-1); //向下调整
}
//建立最小堆
void MakeMinHeap(int a[],int n) //a[]数组已经是模拟好的堆,
{
for(int i=n/2-1;i>=0;i--) //从第一个非叶子结点开始向下调整
{
MinHeapFixdown(a,i,n);
}
}
//堆排序
void heap_sort(int a[],int len)
{
for(int i=len-1;i>=1;i--)
{
swap(a[i],a[0]);
MinHeapFixdown(a,0,i);
}
}
print_arr(int a[],int len)
{
for(int i=0;i<len;i++)
{
cout<<a[i]<<',';
}
cout<<endl;
}
int main()
{
int array[]={9,12,17,30,50,20,60,65,4,49};
int len=sizeof(array)/sizeof(array[0]);
cout<<"堆排序前的元素是:"<<endl;
print_arr(array,len);
MakeMinHeap(array,len);
heap_sort(array,len);
cout<<"堆排序后的元素是:"<<endl;
print_arr(array,len);
return 0;
}