概念
随机森林是一种集成学习算法,它通过结合多棵决策树来进行分类或回归任务。想象一下,你要做一个重要的决定,比如选哪所大学。为了做出最好的选择,你决定咨询很多专家的意见,而不是只听一个人的建议。随机森林的工作原理类似,它通过结合多棵决策树的意见来做出更准确和可靠的预测。具体来说:
1.创建多棵决策树:
随机森林算法会生成许多决策树,每棵树都在不同的随机数据子集上进行训练。每个子集是从原始数据集中随机抽取的样本(随机森林采用了一种称为Bootstrap抽样的方法,这种方法也称为有放回抽样)。
每棵树在训练时,随机选择特征子集来进行分裂,这样每棵树都略有不同。
2.让每棵树进行预测:
对于分类问题,每棵树会给出一个分类结果。随机森林会统计每棵树的投票结果,并选择票数最多的分类作为最终结果,如图 2‑1所示。
图 2‑1随机森林分类
对于回归问题,每棵树会给出一个预测值,随机森林会计算所有树预测值的平均值作为最终结果。
3.结合所有树的结果:
通过结合多棵树的预测,随机森林减少了单棵树可能出现的过拟合问题,提高了模型的准确性和稳定性。