上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。
Input
输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。
整个文件以两个-1结尾。
Output
对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出"Yes",否则输出"No"。
Sample Input
6 8 5 3 5 2 6 4 5 6 0 0 8 1 7 3 6 2 8 9 7 5 7 4 7 8 7 6 0 0 3 8 6 8 6 4 5 3 5 6 5 2 0 0 -1 -1
Sample Output
Yes Yes No
题意:判断给定的图是否有环的存在,并且保证任意两个顶点之间都是联通的。
思路:这个是比较裸的并查集题目,就是在合并两个顶点的时候判断两个顶点的根节点是否一样如果是一样的话,就是证明增加这条边之后,该图有环的存在。然后在连接完图之后,遍历一次father,当father[i]=i证明有多少个根节点,保证全图只有一个根节点,否则输出-1;
#include <iostream>
using namespace std;
int father[100005];
bool flag ,visit[100005];
int getfather(int n)
{
while(n!=father[n])
n = father[n];
return n;
}
void myunion(int x,int y)
{
int a = getfather(x);
int b = getfather(y);
if(a!=b)father[a] = b;
else flag = false;
}
int main()
{
int n,m;
int num;
while(cin>>n>>m)
{
if(n==-1&&m==-1)break;
if(n==0&&m==0){cout<<"Yes"<<endl;continue;}
for(int i=1;i<100005;i++)
{
father[i] = i;
visit[i] = 0;
}
visit[n] = visit[m] = 1;
flag = 1;
myunion(n,m);
while(cin>>n>>m)
{
if(n==0&&m==0)break;
myunion(n,m);
visit[n] = visit[m] = 1;
}
num=0;
for(int i=1;i<100005;i++)
{
if(visit[i]&&father[i]==i)num++;
if(num>1)flag=0;
}
if(flag)cout<<"Yes"<<endl;
else cout<<"No"<<endl;
}
return 0;
}