并查集之删边+带环

本文总结了如何使用并查集处理带有环且需要进行删边操作的图论问题。通常,若题目的需求包含删边或形成环,我们需要反向添加边。以Hdu4496为例,解释了如何处理一个无向图,当删除指定边后,计算连通分量总数。代码分析有助于理解这一方法。
摘要由CSDN通过智能技术生成

今天做了一道带有环并且删边的操作,一起也做过类似的题目,但是又忘记怎么做了,现在总结一下:

一般如果题目一眼看出是用并查集来做的,但是却有删边或者点成环的话,一般要反向加边(本来并查集这个数据结构是不支持删边的)

下面用一道Hdu的题目举例:

Hdu4496

题目描述:给出一个有N(0<N<=10000)个顶点的无向图,然后依次给出它的M(0<M<=100000)条边,要求依次输出当删除给出的前k(0<K<=M)条边后,该图的连通分量总数。

输入:第一行是N和M,然后是M行数(X,Y)(0<=X,Y<N)表示X与Y有边。

输出:依次输出所求的连通分量数。

分析:M>N,肯定会产生环,而且要删边,用逆向加边处理,也就是从最后一个删除的边开始加,你加上一条边,则联通块减去1(初始为N个联通块)

好好分析下代码就知道了

#include <iostream>
#include <cstdio>
using namespace std;
const int maxn = 1e5+10;
int father[maxn];
int N,M;
int ans[maxn];

struct B
{
    int u,v;
}bian[maxn];

void init()
{
    for(int i = 0; i <= N; i++)
    {
        father[i] = i;
    }
}

int Find(int x)
{
    return x == father[x] ? x : father[x] = Find(father[x]);
}

void Union(int x,int y)
{
    int fx = Find(x);
    int fy = Find(y);
    if(fx != fy)
    {
        father[fy] = fx;
    }
}

int main()
{
    while(scanf("%d%d",&N,&M) != EOF)
    {
        init();
        int cent = N;
        for(int i = 0; i < M; i++)
        {
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值