今天做了一道带有环并且删边的操作,一起也做过类似的题目,但是又忘记怎么做了,现在总结一下:
一般如果题目一眼看出是用并查集来做的,但是却有删边或者点成环的话,一般要反向加边(本来并查集这个数据结构是不支持删边的)
下面用一道Hdu的题目举例:
Hdu4496
题目描述:给出一个有N(0<N<=10000)个顶点的无向图,然后依次给出它的M(0<M<=100000)条边,要求依次输出当删除给出的前k(0<K<=M)条边后,该图的连通分量总数。
输入:第一行是N和M,然后是M行数(X,Y)(0<=X,Y<N)表示X与Y有边。
输出:依次输出所求的连通分量数。
分析:M>N,肯定会产生环,而且要删边,用逆向加边处理,也就是从最后一个删除的边开始加,你加上一条边,则联通块减去1(初始为N个联通块)好好分析下代码就知道了
#include <iostream>
#include <cstdio>
using namespace std;
const int maxn = 1e5+10;
int father[maxn];
int N,M;
int ans[maxn];
struct B
{
int u,v;
}bian[maxn];
void init()
{
for(int i = 0; i <= N; i++)
{
father[i] = i;
}
}
int Find(int x)
{
return x == father[x] ? x : father[x] = Find(father[x]);
}
void Union(int x,int y)
{
int fx = Find(x);
int fy = Find(y);
if(fx != fy)
{
father[fy] = fx;
}
}
int main()
{
while(scanf("%d%d",&N,&M) != EOF)
{
init();
int cent = N;
for(int i = 0; i < M; i++)
{