【51NOD 1239】欧拉函数之和

Description


i=1nφ(i)

Solution

一道杜教筛裸题
有结论:(证明在这里

d|nφ(d)=n

则:

d=1ni|dφ(i)=(1+n)n2

i=1nj=1niφ(j)=(1+n)n2

i=1nφ(i)=(1+n)n2i=2nj=1niφ(j)

直接上杜教筛加上哈希即可,

复杂度: O(n23)

Code

#include <cstdio>
#include <cstdlib>
#define fo(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
typedef long long LL;
const int N=5000500,M=1544657,mo=1e9+7;
const LL eni=500000004;
int n;
bool prz[N];
int pr[N];
int phi[N];
int Hx[M+1][2];
int co;
int HX(LL q)
{
    int i=q%M;
    while(Hx[i][0]&&Hx[i][0]!=q)i=(i+1)%M;
    return i;
}
LL Gphi(LL q)
{
    if(q<=n)return phi[q];
    int t=HX(q);
    if(Hx[t][0])return Hx[t][1];
    Hx[t][0]=q;
    LL ans=0,i=2;
    while(i<=q)
    {
        LL ni=q/(q/i);
        ans=(ans+(ni-i+1)*Gphi(q/i))%mo;
        i=ni+1;
    }
    q%=mo;
    return Hx[t][1]=(q*(q+1)%mo*eni%mo-ans)%mo;
}
int main()
{
    n=N-10;
    phi[1]=1;
    fo(i,2,n)
    {
        if(!prz[i])pr[++pr[0]]=i,phi[i]=i-1;
        fo(j,1,pr[0])
        {
            LL t=pr[j]*i;
            if(t>n)break;
            prz[t]=1;
            phi[t]=phi[i]*pr[j];
            if(i%pr[j]==0)break;
            phi[t]=phi[i]*(pr[j]-1);
        }
    }
    fo(i,2,n)phi[i]=(phi[i]+phi[i-1])%mo;
    LL q;
    scanf("%lld",&q);
    printf("%lld\n",(Gphi(q)+mo)%mo);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值