G题 又是毕业季

解决一个编程挑战:在毕业晚会彩排中,老师想选出默契度最高的k个人,默契度由他们的最大公约数决定。给定n和k,找到1到n中k个数的最大公约数。对于不同比例的数据,k有不同的限制,例如k=1时,最大公约数为n,k=2时,为最接近n的偶数除以2。通过递归思考和代码实现,找出解决方案。
摘要由CSDN通过智能技术生成

题目描述
为了把毕业晚会办得更好,老师想要挑出默契程度最大的k个人参与毕业晚会彩排。可是如何挑
呢?老师列出全班同学的号数1,2,……,n,并且相信k个人的默契程度便是他们的最大公约数
(这不是迷信哦)。这可难为了他,请你帮帮忙吧!
PS:一个数的最大公约数即本身。
输入
多组输入,两个空格分开的正整数n和k。(n大于等于k,k大于等于1)
输出
一个整数,为最大的默契值。
输入样例
4 2
输出样例
2
提示
对于20%的数据,k小于等于2,n小于等于1000
对于另30%的数据,k大于等于10,n小于等于100
对于100%的数据,k小于等于1e9,n小于等于1e9(神犇学校,人数众多)
 

解题思路

题目转换为:求k个有各自编号的数的最大公约数,这些数从1.........n中取。

最大公约数顾名思义就是一个能被所指定的数整除的最大的数

当k=1时,最大公约数就是n

当k=2时,最大公约数是离n最近的能被2整除的数再除以2的那个数

当k=3时,最大公约数是离n最近的能被3整除的数再除以3的那个数ÿ

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值