Codeforces 1091E New Year and the Acquaintance Estimation 题解

Codeforces 1091E New Year and the Acquaintance Estimation

【题意】

给你 n n n个点的度 ( d 1 , d 2 , . . . , d n ) (d_1,d_2,...,d_n) (d1,d2,...,dn),然后问你第 n + 1 n+1 n+1个点的度 ( d n + 1 ) (d_{n+1}) (dn+1)的所有可能值

附上鄂尔多斯定理: ∑ i = 1 k d i ≤ k ( k − 1 ) + ∑ i = k + 1 n min ⁡ ( d i , k ) \sum\limits^{k}_{i=1}d_i\leq k(k-1)+ \sum\limits^n_{i=k+1} \min (d_i,k) i=1kdik(k1)+i=k+1nmin(di,k)

【分析】

首先他们的点的度数和一定为偶数,那么我们就能够知道 d n + 1 d_{n+1} dn+1的奇偶性。

我们观察样例2和4,发现他们的答案都是在相同奇偶性下相邻的,于是我们大胆猜测:如果 d n + 1 = X d_{n+1}=X dn+1=X满足条件且 d n + 1 = Y d_{n+1}=Y dn+1=Y满足条件,那么 X &lt; Z &lt; Y X&lt;Z&lt;Y X<Z<Y且与 X , Y X,Y X,Y奇偶性相同的 Z Z Z也一定符合。

为什么? 很明显,如果 X X X符合,那么我们可以把前n个人中的一对 ( u , v ) (u,v) (u,v)的还有关系拆掉,再把 u u u v v v n + 1 n+1 n+1构成好友关系(前提是 u u u v v v之前与 n + 1 n+1 n+1不是好友关系),这样答案就变成了 X + 2 X+2 X+2

然后我们的问题就转化成为求出上文中的 X X X Y Y Y

枚举不行,我们就去思考二分答案。对于一个 d n + 1 d_{n+1} dn+1,我们可以通过鄂尔多斯定理判断出这个新图是否可能。如果他不行,那么我们需要知道他是大是小。这取决于他是在不等式的左侧还是右侧。如果在左侧,那么这个 d n + 1 d_{n+1} dn+1就太大了,因为如果扩大那么不等式是永远不会成立的;反之也类似。

我们发现上面的定理,如果 d d d有序,后面的 m i n ( d i , k ) min(d_i,k) min(di,k)应该是分成两段:一段时间 d i d_i di( d i d_i di更小),一段时间 k k k d i d_i di更大)。这个需要前缀和去维护。

于是问题就做完了。

emm 这个是O(nlogn)的吧。

然后我们发现除排序外可以优化O(n)

我们用一个差分数组cf去维护对于每一个 k k k,计算哪一段 X . . . Y X...Y X...Y是符合要求的,然后如果一段区间的 c f [ X . . . Y ] = n cf[X...Y]=n cf[X...Y]=n则说明这一段通过了所有的要求,就把他加到答案里就好。

呵呵呵虽然时间复杂度依然是O(nlogn)的

【代码】

#include <bits/stdc++.h>
using namespace std ;
#define rep(i, a, b) for (int (i) = (a); (i) <= (b); (i)++)
#define per(i, a, b) for (int (i) = (a); (i) >= (b); (i)--)
#define clr(a) memset(a, 0, sizeof(a))
#define ass(a, sum) memset(a, sum, sizeof(a))
#define lowbit(x) (x & -x)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define enter cout << endl
#define SZ(x) ((int)x.size())
typedef long long ll ;
typedef unsigned long long ull ;
typedef vector <int> vi ;
typedef vector <ll> vl ;
typedef pair <int, int> pii ;
typedef map <int, int> mii ;
typedef map <string, int> msi ;
const int N = 100010 ;
const int iinf = INT_MAX ;
const ll linf = 2e18 ;
const int MOD = 1000000007 ;
void print(int x) { cout << x << endl ; exit(0) ; }
void PRINT(string x) { cout << x << endl ; exit(0) ; }
void douout(double x){ printf("%lf\n", x + 0.0000000001) ; }

int n ;

signed main(){
    scanf("%d", &n) ; vi a(n), cf(n + 2), res ; vl sum(n + 1) ;
	for (int i = 0; i < n; i++) scanf("%d", &a[i]) ;
	sort(a.begin(), a.end()) ;
	for (int i = 0; i < n; i++) sum[i + 1] = sum[i] + a[i] ;
	int j = 0 ;
	for (int k = 1; k <= n; k++) {
		ll l = sum[n] - sum[n - k], r = 1ll * k * (k - 1) ;
		while (j < n && a[j] < k) j++ ;
		int up = min(n - k, j) ;
		r += sum[up] + 1ll * k * (n - k - up) ; // 前面是那个定理
		int bound = a[n - k] ;
		{ // 分类讨论之后差分
			ll dif = l - r ;
			if (dif <= k && dif <= bound) {
				cf[max(dif, 0ll)]++ ;
				cf[bound + 1]-- ;
			}
		}
		{
			l -= a[n - k] ;
			r += min(a[n - k], k) ;
			ll dif = r - l ;
			if (dif > bound) {
				cf[bound + 1]++ ;
				cf[min(dif + 1, n + 1ll)]-- ;
			}
		}
	}
	int now = 0 ;
	for (int i = 0; i <= n; i++) {
		now += cf[i] ;
		if (now == n && (sum[n] + i) % 2 == 0) res.pb(i) ;
	}
	if (res.empty()) print(-1) ;
	for (int i = 0; i < SZ(res); i++) printf("%d ", res[i]) ; enter ;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值