Atcoder Educational DP Contest 题解 + 总结

本文详细解析了Atcoder Educational DP Contest的比赛题目,包括A-F及G-L等题目的动态规划解法,如青蛙跳跃、度假计划、01背包问题等,并分享了作者在比赛中的体验和学习感悟。
摘要由CSDN通过智能技术生成

比赛页面

非常感谢Atcoder提供dp专项比赛,题目都不错(虽然都是一些很有名的题目

迟到1小时的本人打了2小时才过了13题,。。。(打完O就睡觉去了

后来发现是场Unrated比赛? 666

dp还真的挺有趣的

A Frog1

大水题

d p [ i ] dp[i] dp[i]表示到达i的最小花费

d p [ i ] = m i n ( d p [ i − 1 ] + ∣ a [ i ] − a [ i − 1 ] ∣ , d p [ i − 2 ] + ∣ a [ i ] − a [ i − 2 ] ) dp[i]=min(dp[i-1]+|a[i]-a[i-1]|,dp[i-2]+|a[i]-a[i-2]) dp[i]=min(dp[i1]+a[i]a[i1],dp[i2]+a[i]a[i2])

时间复杂度O(n)

啊比赛开场不在状态,忘记 d p [ 0 ] = i n f dp[0]=inf dp[0]=inf导致 w a wa wa了2发罚了 10 m i n 10min 10min

哭啊

int n ;
ll a[N], dp[N] ;

signed main(){
   
	scanf("%d", &n) ;
	for (int i = 1; i <= n; i++) scanf("%lld", &a[i]) ;
	for (int i = 0; i <= n; i++) dp[i] = linf ;
	dp[1] = 0ll ;
	for (int i = 2; i <= n; i++)
	dp[i] = min(dp[i], min(dp[i - 1] + abs(a[i] - a[i - 1]), dp[i - 2] + abs(a[i] - a[i - 2]))) ;
	printf("%lld\n", dp[n]) ;
	return 0 ;
}

B - Frog 2

也还是一样的

d p [ i ] = min ⁡ j = 1 m i n ( i − 1 , k ) d p [ i − j ] + a b s ( a [ i ] − a [ i − j ] ) dp[i]=\min_{j=1}^{min(i-1,k)}dp[i-j]+abs(a[i]-a[i-j]) dp[i]=minj=1min(i1,k)dp[ij]+abs(a[i]a[ij])

O(nk)

int n, k ;
ll a[N], dp[N] ;

signed main(){
   
	scanf("%d%d", &n, &k) ;
	for (int i = 1; i <= n; i++) scanf("%lld", &a[i]) ;
	for (int i = 0; i <= n; i++) dp[i] = linf ;
	dp[1] = 0ll ;
	for (int i = 2; i <= n; i++)
	for (int j = 1; j <= min(i - 1, k); j++)
	dp[i] = min(dp[i], dp[i - j] + abs(a[i] - a[i - j])) ;
	printf("%lld\n", dp[n]) ;
	return 0 ;
}

C - Vacation

依然是入门难度的

d p [ i ] [ j ] dp[i][j] dp[i][j]表示玩到第 i i i天,当天玩的是 j j j项目的最大值

d p [ i + 1 ] [ k ] = m i n ( d p [ i + 1 ] [ k ] , d p [ i ] [ j ] + a [ i + 1 ] [ k ] ) dp[i+1][k]=min(dp[i+1][k],dp[i][j]+a[i+1][k]) dp[i+1][k]=min(dp[i+1][k],dp[i][j]+a[i+1][k])

a n s = min ⁡ i = 1 3 d p [ n ] [ i ] ans=\min_{i=1}^3dp[n][i] ans=mini=13dp[n][i]

时间复杂度O(n)

int n, ans ;
int a[N][4], dp[N][4] ; // dp[i][j]表示玩到第i天,当天玩的是j项目的最大值

signed main(){
   
	scanf("%d", &n) ;
	for (int i = 1; i <= n; i++) scanf("%d%d%d", &a[i][1], &a[i][2], &a[i][3]) ;
	for (int i = 1; i <= n; i++) dp[i][1] = dp[i][2] = dp[i][3] = -iinf ;
	for (int i = 1; i <= 3; i++) dp[1][i] = a[1][i] ;
	for (int i = 1; i < n; i++)
	for (int j = 1; j <= 3; j++)
	for (int k = 1; k <= 3; k++)
	if (j != k)
	dp[i + 1][k] = max(dp[i + 1][k], dp[i][j] + a[i + 1][k]) ;
	for (int i = 1; i <= 3; i++) ans = max(ans, dp[n][i]) ;
	printf("%d\n", ans) ;
	return 0 ;
}

D - Knapsack 1

01背包模板题

直接打就是了

int n, m ;
ll f[N], w[N], v[N] ;

signed main(){
   
	scanf("%d%d", &n, &m) ;
	for (int i = 1; i <= n; i++) scanf("%lld%lld", &w[i], &v[i]) ; // height and value
	memset(f, 0xcf, sizeof(f)) ;
	f[0] = 0 ;
	for (int i = 1; i <= n; i++)
	for (int j = m; j >= w[i]; j--)
	f[j] = max(f[j], f[j - w[i]] + v[i]) ;
	ll ans = 0 ;
	for (int j = 0; j <= m; j++) ans = max(ans, f[j]) ;
	printf("%lld\n", ans) ;
	return 0 ;
}

E - Knapsack 2

物品体积很大,不能按照原先的 d p dp dp方程去 d p dp dp

但是物品的价值最大才 1 0 5 10^5 105

于是我们能够轻松地想出 d p dp dp方程:

d p [ i ] dp[i] dp[i]表示达到 i i i的价值最少需要多大的体积

d p [ j ] = m i n ( d p [ j − v [ i ] ] + w [ i ] ) dp[j]=min(dp[j-v[i]]+w[i]) dp[j]=min(dp[jv[i]]+w[i]) 其中 v v v

AtCoder Beginner Contest 134 是一场 AtCoder 的入门级比赛,以下是每道题的简要题解: A - Dodecagon 题目描述:已知一个正十二边形的边长,求它的面积。 解题思路:正十二边形的内角为 $150^\circ$,因此可以将正十二边形拆分为 12 个等腰三角形,通过三角形面积公式计算面积即可。 B - Golden Apple 题目描述:有 $N$ 个苹果和 $D$ 个盘子,每个盘子最多可以装下 $2D+1$ 个苹果,求最少需要多少个盘子才能装下所有的苹果。 解题思路:每个盘子最多可以装下 $2D+1$ 个苹果,因此可以将苹果平均分配到每个盘子中,可以得到最少需要 $\lceil \frac{N}{2D+1} \rceil$ 个盘子。 C - Exception Handling 题目描述:给定一个长度为 $N$ 的整数序列 $a$,求除了第 $i$ 个数以外的最大值。 解题思路:可以使用两个变量 $m_1$ 和 $m_2$ 分别记录最大值和次大值。遍历整个序列,当当前数不是第 $i$ 个数时,更新最大值和次大值。因此,最后的结果应该是 $m_1$ 或 $m_2$ 中较小的一个。 D - Preparing Boxes 题目描述:有 $N$ 个盒子和 $M$ 个物品,第 $i$ 个盒子可以放入 $a_i$ 个物品,每个物品只能放在一个盒子中。现在需要将所有的物品放入盒子中,每次操作可以将一个盒子内的物品全部取出并分配到其他盒子中,求最少需要多少次操作才能完成任务。 解题思路:首先可以计算出所有盒子中物品的总数 $S$,然后判断是否存在一个盒子的物品数量大于 $\lceil \frac{S}{2} \rceil$,如果存在,则无法完成任务。否则,可以用贪心的思想,每次从物品数量最多的盒子中取出一个物品,放入物品数量最少的盒子中。因为每次操作都会使得物品数量最多的盒子的物品数量减少,而物品数量最少的盒子的物品数量不变或增加,因此这种贪心策略可以保证最少需要的操作次数最小。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值