A - Frog 1:线性DP
【问题描述】
有N块石头,编号1,2,…,N. 第 i (1≤i≤N)块的石头高度 hi.
有一只青蛙从第1块石头开始跳 ,它将反复执行以下的动作直到到达石头N:
如果青蛙当前跳到编号为i的石头上,接下来他只能跳到第i+1块石头或者是第i+2块石头,跳一次的代价是两块石头高度差的绝对值。
问青蛙从第一块石头跳到第N块石头的最小代价。
【输入格式】
第一行输入N,表示石头的数量
接下来的一行有N个数h1,h2,…,hN,表示每块石头的高度
【输出格式】
输出最小代价
题解
f[i]表示跳到第i块石头的最小代价,题意解释了只能第i-1或i-2块石头的状态转移而来,时间复杂度O(N)
#include<bits/stdc++.h>
using namespace std;
int a[100001],f[100001];
int main()
{
int n,i;
scanf("%d",&n);
for(i=1;i<=n;i++)
scanf("%d",&a[i]);
f[2]=abs(a[2]-a[1]);
for(i=3;i<=n;i++)
f[i]=min(f[i-1]+abs(a[i]-a[i-1]),f[i-2]+abs(a[i]-a[i-2]));
printf("%d",f[n]);
return 0;
}
B - Frog 2:线性DP
【问题描述】
有N块石头,编号1,2,…,N. 第 i (1≤i≤N)块的石头高度 hi.
有一只青蛙从第1块石头开始跳 . 它将反复执行以下的动作直到到达石头N:
如果青蛙当前跳到编号为i的石头上,接下来它可以跳到第i+1块石头到第i+K块石头中的任意一块石头,跳一次的代价是两块石头高度差的绝对值。
问请青蛙从第一块石头跳到第N块石头的最小代价。
【输入格式】
第一行输入N,K,分别表示石头的数量和跳跃的石头数
接下来的一行有N个数h1,h2,…,hNh1,h2,…,hN,表示每块石头的高度
【输出格式】
输出最小代价
题解
f[i]表示跳到第i块石头的最小代价,题意解释了能从第i-K到i-1块石头的状态转移而来,i-K可能越界需要控制一下,时间复杂度O(N⨯K)
#include<bits/stdc++.h>
using namespace std;
int a[100001],f[100001];
int main()
{
int n,k,i,j;
scanf("%d %d",&n,&k);
for(i=1;i<=n;i++)
scanf("%d",&a[i]);
for(i=2;i<=n;i++)
{
int t=INT_MAX;
for(j=1;j<=min(k,i-1);j++)
{
if(i-j>0)
t=min(t,f[i-j]+abs(a[i]-a[i-j]));
}
f[i]=t;
}
printf("%d",f[n]);
return 0;
}