蛤很明显题目都是叫你去求概率了 /cy
这个问题特别像背包
于是我们能够列出一个 d p dp dp 状态:
d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k] 表示前 i i i 个回合赢了 j j j 次背包空间还剩下 k k k 的概率
显然分成赢了和输了两种情况:
赢了: d p [ i + 1 ] [ j + 1 ] [ k + a [ i + 1 ] ] + = d p [ i ] [ j ] [ k ] ∗ p [ i + 1 ] dp[i+1][j+1][k+a[i+1]]+=dp[i][j][k]*p[i+1] dp[i+1][j+1][k+a[i+1]]+=dp[i][j][k]∗p[i+1]
输了: d p [ i + 1 ] [ j ] [ k ] + = d p [ i ] [ j ] [ k ] ∗ ( 1 − p [ i + 1 ] ) dp[i+1][j][k]+=dp[i][j][k]*(1-p[i+1]) dp[i+1][j][k]+=dp[i][j][k]∗(1−p[i+1])
那么你会发现这个状态是有 b u g bug bug 的
当你的碎片个数还要大于你的背包容量时,该状态的参数 k k k 会降为负数; 而实际上你却可以在之后的擂台再赢回背包大小,从而放下碎片
怎么办?
当然,我们可以把 k k k 平移一下就解决了
答案就是 ∑ i = l n ∑ j = 0 n d p [ n ] [ i ] [ j ] \sum\limits_{i=l}^n\sum\limits_{j=0}^ndp[n][i][j] i=l∑nj=0∑ndp[n][i][j]
当然你还要特判一个东西,因为 n n n 次挑战最对只需要耗费大小为 n n n 的背包,那么当 k k k 大于 n n n 的时候我们就能够缩小背包容量从而维持空间复杂度
还是一个蛮不错的题目
#include <map>
#include <set>
#include <ctime>
#include <queue>
#include <stack>
#include <cmath>
#include <vector>
#include <bitset>
#include <cstdio>
#include <cctype>
#include <string>
#include <numeric>
#include <cstring>
#include <cassert>
#include <climits>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std ;
#define rep(i, a, b) for (int i = (a); i <= (b); i++)
#define per(i, a, b) for (int i = (a); i >= (b); i--)
#define loop(s, v, it) for (s::iterator it = v.begin(); it != v.end(); it++)
#define cont(i, x) for (int i = head[x]; i; i = e[i].nxt)
#define clr(a) memset(a, 0, sizeof(a))
#define ass(a, sum) memset(a, sum, sizeof(a))
#define lowbit(x) (x & -x)
#define all(x) x.begin(), x.end()
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define iv inline void
#define enter cout << endl
#define siz(x) ((int)x.size())
#define file(s) freopen(s".in", "r", stdin), freopen(s."out", "w", stdout)
typedef long long ll ;
typedef unsigned long long ull ;
typedef pair <int, int> pii ;
typedef vector <int> vi ;
typedef vector <pii> vii ;
typedef queue <int> qi ;
typedef set <int> si ;
typedef map <int, int> mii ;
typedef map <string, int> msi ;
const int N = 210 ;
const int INF = 0x3f3f3f3f ;
const int iinf = 1 << 30 ;
const ll linf = 2e18 ;
const int MOD = 1000000007 ;
const double eps = 1e-7 ;
void print(int x) { cout << x << endl ; exit(0) ; }
void PRINT(string x) { cout << x << endl ; exit(0) ; }
void douout(double x){ printf("%lf\n", x + 0.0000000001) ; }
int n, l, k ;
double ans ;
double dp[N][N][N << 1], p[N] ;
int a[N] ;
int c(int x) {
if (x > n) x = n ;
return x + 200 ;
}
signed main(){
scanf("%d%d%d", &n, &l, &k) ;
rep(i, 1, n) {
int x ; scanf("%d", &x) ;
p[i] = x / 100.0 ;
}
rep(i, 1, n) scanf("%d", &a[i]) ;
if (k > n) k = n ;
dp[0][0][c(k)] = 1 ;
rep(i, 0, n - 1)
rep(j, 0, i)
rep(x, -i, n) {
dp[i + 1][j + 1][c(x + a[i + 1])] += dp[i][j][c(x)] * p[i + 1] ;
dp[i + 1][j][c(x)] += dp[i][j][c(x)] * (1 - p[i + 1]) ;
}
rep(i, l, n)
rep(j, 0, n)
ans += dp[n][i][c(j)] ;
printf("%.6lf\n", ans) ;
return 0 ;
}
/*
写代码时请注意:
1.ll?数组大小,边界?数据范围?
2.精度?
3.特判?
4.至少做一些
思考提醒:
1.最大值最小->二分?
2.可以贪心么?不行dp可以么
3.可以优化么
4.维护区间用什么数据结构?
5.统计方案是用dp?模了么?
6.逆向思维?
*/