使用 AnimateDiff创建令人惊叹的 GIF 动画!了解如何使用这个强大Stable Diffusion工具,释放你的创造力。
- 下载所需文件
- 安装 AnimateDiff扩展
- 安装AnimateDiff模型
- AnimateDiff 设置
- Stable Diffusion设置
嗨,你发现了宝藏。
这是一个AnimateDiff介绍教程,这个工具可让您使用Stable Diffusion创建令人惊叹的 GIF 动画,这是目前为止最好的文本生成视频(Text-to-video)人工智能工具之一。
AnimateDiff GitHub:
https://github.com/guoyww/animatediff/ (复制到浏览器打开)
您可以用它创建逼真的视频,或者卡通风格,目前卡通风格的效果是最好的,所以在本教程中我会演示卡通风格如何使用,道理是一样的。
1. 下载所需文件
对于这种卡通风格,一个不错的checkpoint是 ToonYou,您可以从 CivitAI网站下载最新版本,并把它拖到您的Stable Diffusion模型文件夹中,如下所示。
下图:放到Stable Diffusion的模型文件夹中
2. 安装 AnimateDiff 扩展
要开始使用,不需要从 GitHub 页面下载任何东西。
直接转到Stable Diffusion扩展选项卡,点击“可用”,然后选择“从…加载”,在列表中搜索“AnimateDiff”,点击“安装”添加扩展。
如果在搜索中找不到它,请确保取消选中“隐藏带标签的扩展 -> 脚本”,它就出来啦。
安装扩展后,转到“已安装”选项卡,然后单击“应用并重新启动 UI”。
建议你完全重启Stable Diffusion,以防止发生任何错误。
3. 下载AnimateDiff模型
接下来我们需要 AnimateDiff 模型,这是使用扩展所必需的,您可以从 Hugging Face 网站下载该模型。目前有2种型号可供选择;“mm_sd_v14.ckpt”和“mm_sd_v15.ckpt”。我发现 v14 模型效果更好,但我建议这两个模型都下载下来,这样就可以自己尝试哪个更符合需求。
将这些文件放置在以下目录中:
“StableDiffusion”>“extensions”>“sd-webui-animatediff”>“models”。
4. AnimateDiff 设置
安装 AnimateDiff 扩展后,它会出现在Stable Diffusion界面的底部。
要使用它,单击“AnimatedDiff”选项,界面会展开。以下是您可以配置的一些设置,我列一下我推荐的设置。
运动模块(Motion module):mm_sd_v14.ckpt
帧数(Number of frames):我建议至少使用8帧以获得良好质量,如果使用较低的值,输出效果不会那么好。
每秒帧数(FPS):调整播放速度,我建议至少8到12。
不要忘记选中“启用”来使用该扩展。
故障排除
如果生成时间较长,请在生成前选择右边的“从内存中移除运动模块”。将负面提示控制在75个字符以下也很有帮助。最大帧数使用16帧。
5. Stable Diffusion设置
下面列出了使用 ToonYou checkpoint的推荐设置。
您可以尝试这些设置,找出最适合自己的。
checkpoint模型:ToonYou
clip跳过层:2(或更高)
正面提示词:包括 masterpiece,best quality等
负面提示词:包括 worst quality, low quality, letterboxed等
采样方法:DDIM(这是迄今为止最快的采样方法,会大大减少生成时间)。
采样步骤:最少 25 个,我建议 40 个。
宽高:512x512 或 768x768。请记住,您以后随时可以升级您的 GIF。
提示词相关性(CFG Scale):7.5 - 8
对于其余的配置,使用默认设置就行。
在生成 GIF 之前,我建议生成一些图像,使用你最喜欢的图像中的种子。
OK讲完了,接下来自己试试吧。
示例
以下是使用 AnimateDiff 和特定设置渲染的 GIF 动画的一些示例:
示例1
采样方法:DDIM
迭代步数:40
分辨率:768x512
提示词相关性(CFG Scale):8
模型:ToonYou(Beta 6)
示例2
采样方法:DDIM
迭代步数:40
分辨率:512x512
提示词相关性(CFG Scale):8
模型:ToonYou(Beta 6)
结论
虽然输出的质量可能有所差异,不过不影响AnimateDiff依然是目前最强的文生动图工具之一。
AI****绘画的秘诀之一就是多尝试,试试不同的设置和模型,才能获得更满意的结果。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。点击下方蓝色字 即可免费领取↓↓↓
**读者福利 |**
👉2024最新《AGI大模型学习资源包》免费分享 **(安全链接,放心点击)**
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】或点击下方蓝色字 即可免费领取↓↓↓
**读者福利 |**
👉2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享 **(安全链接,放心点击)**
)** **(安全链接,放心点击)**