国内大厂疯抢大模型人才,大模型人才的春天来了吗?

读者福利:关注公众号【大模型应用开发LLM】可获取入门大模型学习资料包一份~

绝对不要怀疑国内大厂对于人才的投入力度,几乎所有的互联网大厂都有这种对于高端人才的招聘计划,特点就是「高薪」+「高要求」。

你看腾讯的青云计划提到的,它的目标是面向全球,给高薪、给定制化的培养、做核心业务、目标是解决前沿问题,可以理解这是一个更偏向研究型的工作岗位。

在这里插入图片描述

特别这个计划有一个专门针对于大模型的系列,全都是大模型最前沿的且亟待解决的问题,比如大模型的文生视频、多模态大模型等等。这些都是非常前沿且开放的问题,现在市面上有一些解决方案,比如OpenAI的GPT4o,但是很难说这就是最终的解决方案。

在这里插入图片描述

跟青云计划类似的「大模型」人才招聘计划还有一些,比如字节跳动的“Top Seed”和“筋斗云人才计划”、百度的“AIDU计划”以及商汤的“AI先锋顶尖人才计划”,这些全都是针对于人才的争抢,年薪基本上都在大几十万起。

但是这么高的薪资自然要求也会更高,一般来说得满足“专业技能”和“工程经验”。

专业技能:都是常规的技能,比如AI的理论知识,一些编程语言,常用的框架等等。

  • 机器学习、深度学习等理论知识。
  • 精通深度学习框架,如PyTorch、TensorFlow等,以及模型优化技术。
  • 对于多模态大模型岗位,需深入理解TransformerCNNRNN等。

这些技能的特点就是杂而多,只对于非AI专业来说学习初期阻力会很大,特别是大模型这种技术,外行入门自学入门需要的时间和知识储备都非常大,建议去下面添加微信跟行业深耕多年的大咖进行系统的学习,从一个具体的项目入手会学的既扎实又快,毕竟大模型这波红利不等人。微信扫码加入学习
在这里插入图片描述

工程经验:这个部分其实非常能拉开差距,且能看出来是否有比如有没有实战经验,比如多卡多机的大模型预训练,有没有做过RLHF的实践等等,这个很容易从简历和发布的论文中看出端倪。

下面我罗列了一些比较常见的技能储备,但一般来说只需要掌握一些核心的技能即可,工作中遇到的问题大多数考验的是学习能力以及随机应变的能力。

技能类别技能描述
大模型训练经验具有使用大规模计算资源(如多机多卡配置)进行大模型(如65B参数以上)训练的经验。熟悉如何高效利用GPU资源,如A100等高端显卡,进行全量微调或预训练。
模型优化与调参能够对模型架构进行排列组合优化,避免过度复杂的网络结构,追求模型的效率与性能平衡。了解如何通过技术如LoRAP-tuning等来提升模型在有限资源下的表现。
模型评测与强化学习掌握模型评估方法,能够设计和实施有效的模型评测体系,确保模型质量。对于强化学习(RLHF)有实践经验,能解决训练资源紧张下的模型优化问题。
算法落地与优化将大模型应用于实际业务场景,如营销、内容生成等,根据用户反馈持续优化模型效果和用户体验。
多模态大模型开发对于涉及图像、文本等多模态数据的模型,需要有从零开始构建、优化多模态大模型的经验,包括预训练、指令微调等技术。
持续集成与部署(CI/CD)作为MLOps的一部分,了解如何自动化模型的构建、测试和部署流程,确保模型的快速迭代和稳定运行。

其实除了这些需要高度专业化的岗位需要硕士博士且研究性极强外,还有很多的公司其实做的更多的是基于大模型的应用

这类型应用的特点就是高度依赖于别家的API,比如市面上很多的写作助手、对话助手之类的AI应用,其实就是在第三方的API上套了一层壳。

简单来说,我是对话助手,你把信息发给我,我自己不会处理,我发给你ChatGPT,它处理完的信息回复给我,我再回复给你,我只起到了中转的作用,而核心的处理是OpenAI在做。
在这里插入图片描述

而做AI应用的公司要远远多于研究AI的公司,因为后者投资过于大且需要大量的专业人才,而AI应用难度就大大降低了,因为对于程序员来说,调用API是一件再平常不过的事情,特别是大模型的API非常容易使用。

在这里插入图片描述

比如最新的GPT 4o mini的使用,就是非常简单的json格式,稍微改改就行。

curl https://api.openai.com/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $OPENAI_API_KEY" \
  -d '{
     "model": "gpt-4o-mini",
     "messages": [{"role": "user", "content": "Say this is a test!"}],
     "temperature": 0.7
   }'

这其实是一部分程序员的机会,因为自己的编程经验+AI知识就能做更高薪的工作。特别是我认识的很多人都开始往大模型应用方向转了,这个方向其实要比单纯的写代码有潜力的多,因为毕竟还在行业的早期,主要有两个方向,一个是大模型本身的训练以及智能提升,就是这个题目提到的,这个方向需要的人不多;另一个就是针对已有大模型的应用,特别是对于开源大模型的微调再应用,是一个非常火的方向。

因为大模型最终能否活下来要看应用是否能落地,而这方面要求程序员掌握大模型的基础技术知识,以及针对特定问题的解决办法,可以是RAG,也可以是Fine-tune,比较简单的场景也可以用特征工程,这方面的知识在知学堂的AI大模型课程中有详细的解释以及实战演示,现在可以免费从下面的入口了解⬇️

🔥技术岗高薪必学:AI大模型技术原理+应用开发+模型训练

¥0.00就业无忧

公开课是孙志岗老师研发的,他之前独立开发的AI大模型评测软件ChatALL.ai,几次登上Github的全球热榜第一,实力不用多说。对了,课上还有RAG、LangChain、Fine-tune的相关内容,也非常值得听听。

如果你关注近期的一些大模型应用,会发现这些应用大多是多种技术的融合。例如,使用RAG技术可以提升生成模型的准确性和信息性,而微调技术则可以使模型更适应特定任务,prompt工程在一些简单场景下也能发挥重要作用。

而在一些复杂的情景,Prompt能做的非常有限,因为它只能改变一点儿输出的模式,而RAG或者微调大模型对于一些复杂任务就是必不可少的步骤。

这也是现在主流的LLM应用的主要解决版办法,就是RAG+微调,试图最大程度的控制LLM的输出。

在这里插入图片描述

以上只是粗浅的介绍,至于深入的学习以及实践,是非常需要一些实战经验的。更深入的理论以及讲解,可以看看下午我为大家准备的资料:

如何学习AI大模型?

大模型的发展是当前人工智能时代科技进步的必然趋势,我们只有主动拥抱这种变化,紧跟数字化、智能化潮流,才能确保我们在激烈的竞争中立于不败之地。

那么,我们应该如何学习AI大模型?

对于零基础或者是自学者来说,学习AI大模型确实可能会感到无从下手,这时候一份完整的、系统的大模型学习路线图显得尤为重要。

它可以极大地帮助你规划学习过程、明确学习目标和步骤,从而更高效地掌握所需的知识和技能。

这里就给大家免费分享一份 2025最新版全套大模型学习路线图,路线图包括了四个等级,带大家快速高效的从基础到高级!

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
在这里插入图片描述
👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

大模型教程

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

电子书

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,需要的扫描下方二维码领取 **

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值