想象2025 年没有学位,是否获得一份高薪的人工智能工程师工作?
听起来难以置信?其实不然。
人工智能的世界发展迅速,公司不再只看文凭,他们看重的是技能。
进入科技行业的旧规则正在逐渐消失。
如今,自学成才者、转行者和人工智能爱好者正在证明,实践经验和实际项目比正规教育更重要。
最好的部分是什么?
对人工智能人才的需求正在激增,现在是进入该行业的最佳时机。
但是你从哪里开始呢?
如果你对人工智能很着迷,但又不知道如何进入这个领域,别担心我会帮你的。
本指南将指导你如何成为一名人工智能工程师并在 2025 年获得聘用,即使你没有任何经验或来自完全不同的背景。
让我们从头开始开启你的人工智能职业生涯——无需大学学位!
什么是人工智能及其子集?
**人工智能 (AI)**就像是给机器赋予大脑。它是一门创建系统的科学,该系统可以执行需要人类智能才能完成的任务。
想想诸如理解语言、识别图像,甚至下棋之类的事情。
现在,人工智能是一个大框架,在它之下,我们有几个关键领域:
1.机器学习(ML)
1.机器学习(ML)
想象一下,音乐家通过反复聆听歌曲来学习演奏。他们不需要记住特定的指令,而是随着时间的推移识别模式、节奏和音符。
同样,机器学习用数据训练算法,让它们无需明确编程即可识别模式并做出预测。
*深入挖掘的资源:*
*Coursera 的 Andrew Ng 机器学习课程:一门分解机器学习概念的适合初学者的课程。Google 的机器学习速成课程*:提供实践练习和互动课程。
2.深度学习
2.深度学习
这就像是 ML 的高级版本。深度学习受到人类大脑结构的启发,使用多层神经网络来分析数据。这就是语音助手和图像识别背后的魔力。
*可供探索的资源:*
*Coursera 上 Andrew Ng 的深度学习专业化课程:深入研究神经网络的合系列课程。*
*fast.ai 的面向程序员的实用深度学习*:专注于实际应用的实践课程。
3.自然语言处理(NLP)
3.自然语言处理(NLP)
有没有想过聊天机器人如何理解和响应您的查询?
这就是 NLP 的实际应用。它使机器能够掌握、解释和生成人类语言。
*入门资源:*
*使用 Python 进行自然语言处理(书籍):使用 Python 进行 NLP 任务的指南。*
*斯坦福的 NLP 课程*:提供著名 NLP 课程的幻灯片和材料。
4.计算机视觉
4.计算机视觉
该领域使机器能够解读图像或视频中的视觉信息。这就是你的手机如何识别你的脸,或者自动驾驶汽车如何感知周围环境。
*更多学习资源:*
*Coursera 的计算机视觉基础知识:计算机视觉基础知识的介绍。*
*PyImageSearch 的教程*:有关计算机视觉项目的实用指南和教程。
通过探索这些子集,您将全面了解 AI 及其多样化应用。
什么是AI工程?
什么是AI工程?
人工智能工程是构建智能系统的一门手艺。
它是设计、开发和部署能够解决实际问题的人工智能模型的过程。
与专注于基于规则的系统的传统软件工程不同,人工智能工程涉及创建能够学习和适应的系统。
例如,人工智能工程师不必编写一个系统来通过预定义规则识别垃圾邮件,而是开发一个模型,通过分析大量电子邮件数据来学习识别垃圾邮件。
这种方法可以提高灵活性和准确性,尤其是在复杂情况下。
谁是 AI 工程师?
谁是 AI 工程师?
AI 工程师就像现代巫师,将计算机科学、数学和领域专业知识融为一体,打造智能应用程序。
他们设计能够处理信息、从中学习并做出明智决策的算法。
在他们的工具包中,你会发现:
编程技能:精通 Python 或 R 等语言。
数学知识:扎实掌握统计学、线性代数和微积分。
领域专业知识:了解 AI 解决方案将应用的具体领域,无论是医疗保健、金融还是娱乐。
人工智能工程师经常与数据科学家、软件开发人员和业务分析师合作,将人工智能解决方案变为现实。
人工智能工程师做什么?他们的职责是什么?
AI 工程师身兼数职。他们的日常任务可能包括:
人工智能工程师做什么?他们的职责是什么?
- **数据收集和预处理:**收集相关数据并清理以确保质量。这可能涉及处理缺失值、规范化数据或将其转换为可用格式。
- **模型开发:**设计和训练机器学习模型。这涉及选择正确的算法、调整参数以及确保模型的性能符合所需标准。
- **集成:**将 AI 模型嵌入现有系统或应用程序中,确保它们与其他软件组件无缝协作。
- **监控和维护:**部署后,AI 模型需要定期监控以确保其继续表现良好。这可能涉及使用新数据重新训练模型或调整模型以应对不可预见的情况。
- **协作:**与其他团队密切合作,以了解需求、交流发现并实施符合业务目标的解决方案。
本质上,人工智能工程师弥合了理论人工智能概念与实际应用之间的差距,将想法转化为有形的产品。
为什么要使用 AI 工程?
你可能会想,“我为什么要涉足人工智能工程?”
好吧,以下是几个令人信服的理由:
为什么要使用 AI 工程?
- **需求旺盛:**科技行业对人工智能专业人员的需求旺盛。各大公司都渴望利用人工智能来保持竞争力,这导致与人工智能相关的职位数量激增。
- **丰厚薪水:**人工智能工程师是科技界收入最高的人群之一。在美国,人工智能工程师的平均年薪约为 175,000 美元。
- **创新工作:**人工智能工程提供了从事突破性项目的机会,从开发自动驾驶汽车到创建个性化的医疗保健解决方案。
- **面向未来的职业:**随着人工智能的不断发展,对熟练的人工智能工程师的需求只会增长,从而确保稳定而令人兴奋的职业道路。
踏上人工智能工程之旅意味着让自己站在技术创新的前沿。
人工智能工程师和机器学习工程师有什么区别?
乍一看,人工智能工程师和机器学习 (ML) 工程师的角色似乎相同,但有一个细微的区别:
人工智能工程师和机器学习工程师有什么区别?
- **AI 工程师:**专注于更广泛的人工智能应用,包括机器学习,也涵盖机器人、专家系统和自然语言处理等领域。
- **ML 工程师:**专门从事机器学习,专注于设计和实施允许机器从数据中学习的算法。
简单来说,虽然所有 ML 工程师都在 AI 领域工作,但并非所有 AI 工程师都局限于机器学习。
AI 工程是一个更广泛的领域,机器学习是其中的一个重要子集。
我需要学位才能成为人工智能工程师吗?
我需要学位才能成为人工智能工程师吗?
好消息是:**成为 AI 工程师并不一定需要正式学位。**科技行业更看重技能和经验,而非传统资历。
许多专业人士通过自学、在线课程和实践项目转型成为 AI 工程师,而非传统的计算机科学学位。
虽然拥有学位可以提供系统化的学习和交流机会,但这并不是一项严格的要求。
许多公司,包括谷歌和 IBM 等大型科技巨头,都采用了基于技能的招聘方式,优先考虑实践知识而不是正规教育。
如果你是自学成才或来自不同背景,进入人工智能工程领域的关键是:
- 建立强大的投资组合——在 GitHub 等平台上展示您的 AI 项目。
- 获得实践经验——研究现实世界的人工智能问题、为开源项目做出贡献或参加黑客马拉松。
- 获得相关认证——Coursera、Udacity 和 edX 等平台的在线课程和认证可以验证您的专业知识。
- 与 AI 专业人士建立联系——加入 AI 社区,参加聚会,并在 LinkedIn 上与专业人士建立联系。
只要有奉献精神和战略方法,你绝对可以成为一名无需学位的人工智能工程师。
人工智能工程师的平均工资是多少?
人工智能工程师的平均工资是多少?
人工智能工程最吸引人的方面之一是其高收入潜力。
截至 2025 年,美国人工智能工程师的平均年薪约为 175,000 美元(aijobs.net)。
但是,薪水可能会因以下因素而有所不同:
- 经验水平:入门级 AI 工程师的起薪通常为每年 90,000 至 120,000 美元左右,而经验丰富的专业人士****每年可赚200,000 美元以上。
- **地点:**旧金山、纽约和西雅图等科技中心的人工智能工程师往往能获得更高的薪水。
- **行业:**金融、医疗保健和自主系统领域的人工智能职位的薪酬通常比传统软件开发职位更高。
此外,高级人工智能工程师或在Google DeepMind、OpenAI 或特斯拉等顶级公司担任研究职位的人员可以获得超过****30 万美元的薪水,尤其是加上奖金和股票期权。
如果您正在寻找一份收入丰厚、面向未来的职业,人工智能工程无疑是最好的领域之一。
人工智能工程师的类型
人工智能工程师的类型
人工智能工程是一个广阔的领域,根据你的兴趣,你可以专攻不同的领域。以下是一些主要的人工智能工程师类型:
- 机器学习工程师——专注于构建机器学习模型和优化算法。
- 深度学习工程师——专门设计用于图像识别和语音处理等任务的神经网络。
- 计算机视觉工程师——使用处理和分析视觉数据的人工智能模型,例如面部识别或自动驾驶汽车。
- 自然语言处理 (NLP) 工程师——开发理解人类语言的人工智能系统,例如聊天机器人和虚拟助手。
- 人工智能研究科学家——进行人工智能领域的前沿研究,致力于先进的模型和新颖的算法。
- 机器人工程师——为自动化、制造甚至太空探索构建人工智能机器人。
每个角色都需要略有不同的技能,但都属于人工智能工程的广泛范畴。
人工智能工程需要学习的顶级技能
人工智能工程需要学习的顶级技能
要想成为一名成功的 AI 工程师,你需要兼具技术技能和软技能。以下是基本技能的细分:
1.编程语言
编码是 AI 工程的支柱。Python 因其简单性和丰富的生态系统而成为使用最广泛的语言,但您也应该熟悉 R、Java 和 C++。
*学习人工智能编程的资源:*
*Python 数据科学和机器学习训练营 (Udemy)*
*使用 Python 自动化枯燥工作(免费书籍)*
2. 数学与统计学
人工智能依赖于线性代数、概率和微积分等数学概念。这些领域的坚实基础至关重要。
*资源:*
*机器学习数学(Coursera)*
*3Blue1Brown 的线性代数 YouTube 系列*
3.机器学习与深度学习
必须了解 ML 和深度学习框架,例如 TensorFlow 和 PyTorch。
*资源:*
*fast.ai 为程序员提供的实用深度学习*
*Andrew Ng 的深度学习专业课程(Coursera)*
4.数据结构与算法
AI 工程师经常处理大型数据集并优化算法以获得更好的性能。了解如何使用树、图和哈希表等数据结构至关重要。
*资源:*
*GeeksforGeeks 数据结构和算法指南*
*MIT 开放式课程——算法导论*
5.云计算与大数据
由于 AI 模型需要强大的计算能力,熟悉AWS、Google Cloud 和 Azure等云平台是一项优势。
*资源:*
*谷歌云机器学习培训*
*AWS AI 和 ML 认证*
6.软技能(批判性思维和沟通能力)
AI 工程师经常需要向非技术团队解释复杂的想法,并与利益相关者合作,以确保 AI 解决方案符合业务需求。
*资源:*
*团队合作技巧:团体内有效沟通(Coursera)*
*批判性思维与问题解决(edX)*
成为人工智能工程师的分步过程(无需学位!)
现在,让我们逐步分解从零开始成为一名人工智能工程师的过程。
成为人工智能工程师的分步过程(无需学位!)
第一步:学习编程基础知识
从 Python 开始,因为它对初学者友好并且在 AI 中广泛使用。
*资源:*
*CS50 计算机科学导论(哈佛)*
*人人都能学 Python(Coursera)*
第 2 步:掌握人工智能的数学和统计学
重点关注概率、线性代数和微积分等关键主题。
*资源:*
*机器学习数学(书籍)*
*可汗学院的概率与统计课程*
步骤 3:深入研究机器学习
先从预测股票价格或检测垃圾邮件等小项目开始,然后再转向复杂的机器学习任务。
*资源:*
*谷歌的机器学习速成课程*
*使用 Scikit-Learn 和 TensorFlow 进行机器学习实践(书籍)*
步骤 4:开展现实世界的 AI 项目
构建项目是学习人工智能的最佳方式。尝试创建聊天机器人、推荐系统或人工智能应用程序。
*在哪里可以找到项目:*
*Kaggle—一个拥有数据集和 ML 挑战的平台。*
*AI Crowd—*举办针对现实世界应用的 AI 竞赛。
还有更多内容需要介绍,包括如何建立您的投资组合、网络、申请工作以及不断提升技能。您希望我继续生成下一节吗?
第五步:建立强大的投资组合
如果你真的想成为一名人工智能工程师,你需要用一份出色的作品集来证明你的技能。一份精心制作的作品集可以展示你的专业知识、解决问题的能力和创造力。雇主和招聘人员看重的是**现实世界的项目,**而不仅仅是理论知识。
如何建立人工智能投资组合?
1.从小项目开始
从适合初学者的 AI 项目开始。这些可能是简单的应用程序,例如:
- 使用机器学习的垃圾邮件分类器
- 使用自然语言处理 (NLP) 的聊天机器人
- 使用深度学习的数字识别器
2. 参与开源项目
为GitHub上的开源 AI 项目做出贡献可以帮助您在 AI 社区中获得经验和知名度。寻找您可以做出贡献的适合初学者的存储库。
3.创建端到端AI应用程序
雇主更喜欢能够将想法从数据收集转化为模型部署的人工智能工程师。例如:
- 电影推荐系统
- 基于人工智能的天气预报工具
- 实时人脸识别系统
** **
4. 在 GitHub 和 Kaggle 上展示你的作品
将您的项目连同详细文档一起上传到GitHub和Kaggle,以便潜在雇主可以看到您的思考过程。
5.建立个人网站或博客
拥有一个个人网站,您可以在那里解释您的 AI 项目、撰写您的学习历程并分享见解,这可以让您脱颖而出。您可以使用以下平台:
- GitHub 页面
- WordPress
- Medium
6. 准备一份作品集介绍
在申请工作时,创建一个简短的**PowerPoint 演示文稿,**总结您的 AI 项目、数据集、使用的模型和关键结果。
第 6 步:与 AI 专业人士建立联系
建立人脉是进入人工智能领域的最快途径之一。
你认识的该领域的人越多,你获得人工智能工作或实习机会的机会就越大。
如何有效地建立人际网络?
1.加入人工智能社区
参与以人工智能为中心的社区,向专家学习、提出问题并合作开展项目。
- Reddit r/MachineLearning
- LinkedIn AI 群组
- Kaggle 讨论
2. 参加人工智能聚会和会议
NeurIPS、CVPR 和 AI Summit等活动非常适合结识 AI 专业人士和潜在雇主。查看:
- 人工智能全球峰会
- NeurIPS 会议
3. 在 Twitter 和 LinkedIn 上与 AI 专家互动
关注并与以下 AI 思想领袖互动:
A****ndrew Ng (@AndrewYNg) Coursera 联合创始人和人工智能研究员。
**Yann LeCun(@ylecun)**Meta 首席人工智能科学家。
Sebastian Raschka (@rasbt) AI 和 ML 作者
4. 寻求指导
不要犹豫,在 LinkedIn 上向 AI 工程师发送个性化消息,寻求职业建议或指导。像这样的简单消息效果很好:
“嗨 [姓名],我是一名自学成才的人工智能爱好者,正在努力建立自己的投资组合。我非常钦佩你在 [特定人工智能领域] 的工作。我很想听听你对进入人工智能工程的任何建议。期待你的真知灼见!”
建立人际网络并不是为了寻求工作,而是为了学习、建立关系以及在人工智能社区中保持知名度。
步骤 7:申请 AI 工程职位
一旦你建立了自己的技能和作品集,就该开始申请工作了。以下是增加你获得 AI 工程师职位机会的分步策略。
在哪里可以找到人工智能职位空缺?
1. LinkedIn 招聘
最好的 AI 职位发布平台之一。您还可以在这里与招聘人员联系。LinkedIn 上的 AI 工程师职位
2. Indeed 和 Glassdoor
这些网站列出了不同行业的人工智能工作。
Indeed 人工智能工程师招聘信息
Glassdoor 人工智能职位
3. 人工智能专属招聘板块
- AI 工作委员会——专注于 AI 职业。
- Otta——非常适合 AI 初创企业的工作。
如何准备人工智能工作面试?
1. 练习 AI 编码挑战
许多公司使用编码评估来测试解决问题的能力。尝试解决与 AI 相关的挑战:
- LeetCode
- HackerRank
2. 准备技术面试
准备回答以下问题:
- 机器学习基础知识
- 神经网络和深度学习
- Python、TensorFlow 和 PyTorch 编码挑战
3. 创建出色的简历和求职信
突出您的 AI 项目、相关技能和实践经验,而不仅仅是列出课程。
4. 准备好解释你的投资组合
许多面试官会询问你的人工智能项目,所以要准备好详细讨论所面临的挑战、使用的模型和结果。
第 8 步:继续提升技能
人工智能的发展速度比以往任何时候都快,因此持续学习对于保持领先至关重要。以下是您可以不断提升技能的方法:
最佳持续学习人工智能课程:
- 人人享有人工智能(Coursera)
- Udacity 人工智能纳米学位
- 斯坦福 CS231n:计算机视觉深度学习
最佳高级学习人工智能书籍:
- Ian Goodfellow 的*《深度学习》*
- 模式识别与机器学习(作者:Christopher Bishop)
- 人工智能:思考人类的指南(梅兰妮·米切尔著)
YouTube 上最佳的 AI 学习频道:
- 两分钟论文——用简单的术语解释人工智能研究论文。
- **Sentdex——**面向初学者的 Python 和 AI 教程。
- DeepLearningAI — 由 Andrew Ng 运营,涵盖人工智能基础知识。
紧跟人工智能趋势和技术将帮助您保持竞争力并在未来获得薪酬更高的人工智能职位。
向 AI 工程师的最佳在线课程
面向 AI 工程师的最佳在线课程
好吧,让我们直奔主题——如果你想成为一名人工智能工程师,你需要从正确的资源中学习正确的技能。市面上有大量的人工智能课程,但并不是所有的课程都以一种能让你从初学者变成专家的方式构建。
为了方便您,我列出了一些最好的在线课程,并根据您的技能水平进行了分类。无论您是刚起步还是希望深化您的专业知识,这些课程都将帮助您培养获得 AI 工程工作所需的技能。
初级课程(无需经验)
如果您对人工智能完全陌生并且不知道从哪里开始,这些适合初学者的课程将帮助您理解基础知识,而不会让您被复杂的数学或术语所困扰。
1.适合所有人的人工智能——Coursera(吴恩达)
如果您没有任何技术背景,但想了解什么是人工智能、它的工作原理以及它在当今行业中的应用情况,那么本课程非常适合您。
您无需编写代码— 只需了解大局。
如果您对人工智能感到好奇,并想知道它为什么如此重要,那么这是最好的起点。
2. Python 在数据科学和机器学习中的应用—Udemy
在深入研究 AI 之前,您必须学习 Python,因为它是 AI 工程师的首选语言。本课程从头开始教授 Python,并涵盖数据科学和机器学习的基础知识。
它非常适合想要通过实际编码练习进行动手实践的初学者。
3. CS50 使用 Python 进行 AI 入门——哈佛
哈佛的CS50 系列是最好的免费在线编码资源之一,这门 AI 课程也不例外。它引导您使用 Python 完成搜索算法、游戏 AI 和机器学习模型。
最好的部分是什么?它完全免费,并为您提供真正的项目!
4.机器学习速成课程——谷歌
Google 工程师设计了这门免费课程,为初学者快速介绍机器学习。它是互动式的,包含练习,并且完全是自定进度的— 因此您可以按照自己的速度完成。
中级课程(适合有 Python 和 ML 基本知识的人员)
一旦你对 Python 和数据科学有了一些经验,就该开始学习机器学习和深度学习了。这些课程将教你如何构建 AI 模型、训练它们,并在实际应用中使用它们。
5.机器学习—Coursera(吴恩达)
这是最受推荐的机器学习课程,这是有原因的。它涵盖了监督和无监督学习、神经网络和模型评估。如果你想了解人工智能背后的核心概念,这门课程是必修的。
6.深度学习专业化 - Coursera (Andrew Ng)
一旦你理解了 ML,下一步就是深度学习。这个专业化实际上是五门课程的集合,带你深入了解神经网络。你将学习如何训练语音识别、图像处理等人工智能模型。
7. AI TensorFlow 简介 — Coursera
TensorFlow 是最流行的 AI 框架之一,本课程教你如何使用 TensorFlow 构建 AI 模型。如果你打算从事深度学习项目,这是一个必学的工具。
高级课程(适合希望掌握人工智能工程的人)
如果您已经熟悉机器学习和深度学习,那么是时候将知识提升到一个新的水平了。这些高级课程将帮助您专注于计算机视觉、NLP 和强化学习等领域。
8.斯坦福 CS231n:计算机视觉深度学习
如果你想从事计算机视觉(图像识别、物体检测等)工作**,这是最好的课程。它涵盖了卷积神经网络(CNN)及其在****自动驾驶汽车和面部识别**等应用中的使用。
9.强化学习专业化 - Coursera
强化学习是人工智能机器人、自学游戏人工智能(如 AlphaGo)和自主系统背后的技术。如果你想研究能够做出决策的人工智能代理,这是你应该学习的课程。
10.全栈深度学习
本课程主要介绍如何在实际应用中构建、优化和部署 AI 模型。如果您对 AI 产品开发感兴趣,这是最****实用的课程之一。
人工智能工程师的职业道路
那么,一旦你学会了人工智能,你的职业生涯将会如何发展呢?人工智能工程师不只是一份工作——它是一条拥有多种职业机会的道路。
以下是你的职业生涯可以如何发展:
人工智能工程师的职业道路
1. 入门级 AI 工程师(0-2 年经验)
- 您将从初级 AI 工程师或 ML 工程师做起,主要负责数据预处理、模型训练和 AI 算法实验。
- 年薪:9万—12万美元
** **
2.中级AI工程师(2-5年经验)
- 您将开始设计AI 管道、优化模型以及在现实环境中部署 AI 应用程序。
- 年薪:12万—17.5万美元
** **
3.高级AI工程师(5年以上经验)
- 您将领导 AI 团队,开发新的 AI 架构,并优化用于大规模应用的深度学习模型。
- 年薪:17.5万—25万美元
** **
4. 人工智能研究科学家/人工智能架构师
- 如果您有兴趣突破人工智能的界限,您可以成为深度学习、NLP 或强化学习的研究员。
- 薪水:每年 200,000 至 400,000 美元(尤其是在 OpenAI、Google DeepMind 或 Meta AI 等顶级人工智能实验室)。
** **
5. 首席技术官 / 人工智能初创公司创始人
- 如果您想建立自己的人工智能初创公司,您可以创办自己的公司或成为首席技术官(CTO)。
人工智能工程师的未来前景
人工智能的发展速度比以往任何时候都快,对人工智能工程师的需求也很大。以下是人工智能正在产生巨大影响的一些令人兴奋的领域:
人工智能工程师的未来前景
- 医疗保健:人工智能正在彻底改变疾病检测、医学成像和个性化治疗。
- 自动驾驶汽车:特斯拉和 Waymo 等公司正在开发由人工智能驱动的自动驾驶技术。
- 金融:人工智能用于欺诈检测、算法交易和信用风险分析。
- 创意人工智能: ChatGPT 和 DALL·E 等人工智能工具正在改变内容创作、艺术和音乐。
- 网络安全:人工智能有助于****实时检测和预防网络攻击。
到 2030 年,人工智能工程师将成为全球最受欢迎的专业人才之一,从而成为一个面向未来的职业选择。
结论
无需学位即可成为 AI 工程师!只要具备正确的技能、项目和人脉,到 2025 年,您就可以在 AI 领域找到工作。请记住:
结论
- 掌握基础知识(Python、ML、深度学习)。
- 参与现实世界的人工智能项目并建立投资组合。
- 与人工智能专业人士建立联系并向行业专家学习。
- 申请工作并准备技术面试。
- 不断提升技能,以在这个不断发展的领域保持领先地位。
人工智能是未来——为什么不参与其中呢?从今天开始,谁知道呢,几年后,你可能会在一家顶级人工智能公司工作!
常见问题解答
- **如何在 2025 年成为 AI 工程师?**学习 Python、构建 AI 项目并申请工作 - 无需学位!
- **没有学位我能成为 AI 工程师吗?**可以!自学成才的 AI 工程师只要具备技能,就很抢手。
- **成为 AI 工程师的路线图是什么?**学习 ML、构建项目、建立人脉并申请 AI 工作。
- AI 工程师做什么? AI 工程师开发机器学习模型并部署 AI 应用程序。
- AI工程师的薪水是多少?美国AI工程师的平均年薪为17.5万美元。
最后的想法
人工智能工程师是当今最令人兴奋和最赚钱的职业之一。
无论您是从零开始还是不断提升技能,关键是要不断学习、构建项目并随时了解人工智能趋势。
这一路走来并不总是一帆风顺,但只要你坚持不懈,遵循路线图,你就会找到梦想的人工智能工程师工作。
**现在轮到你了!**你准备好开始你的 AI 之旅了吗?
在评论中告诉我你对 AI 最感兴趣的是什么!
附录下表列出了人工智能的几个优点以及缺点和危险。
表 1 :
*人工智能的优点、缺点和危险*
注:该表列出了人工智能的主要优点、缺点和危险。
来自多个来源(罗文大学,第 2024 年;圣乔治大学,第 2024 年;Takyar,第 2025 年;辛辛那提大学,第 2025 年;冯德奥斯滕,第 2023 年;国会科技大学,第 2023 年;D’Antonoli,第 2020 年;Thomas,第 2024 年;弗吉尼亚理工学院工程师,第 2023 年;Fardian,第 2022 年;Georgieva,第 2024 年)
如表 1 所示人工智能有很多好处,也有很多缺点。
我主要的道德担忧是它现在是如何被使用以及未来将如何取代人类工人。大型 SaaS 公司 Salesforce 宣布,在人工智能显著提高生产力的情况下,2025 年它将不再雇佣任何软件工程师 (Martin,2024)。
此外,到今年年底,即 2025 年,能够自主执行复杂任务的代理人工智能和能够执行人类可以执行的任何智力任务的 AGI(通用人工智能)预计将面世并开始部署。
在一个人工智能比人类更高效、更有生产力、更便宜的社会中,大规模的工作岗位流失和就业的可能性是一个非常严重的问题,也是一个严重的政治和道德问题。
人工智能对我的教育道路和未来职业选择的影响
我在 2021 年开始了我的计算机科学教育之旅,那时 ChatGPT 等 LLM 聊天框还未出现,也就是说,它们还没有出现或产生影响。
现在,作为科罗拉多州立大学全球分校的一名大四学生,我已将计算机科学学位重点从软件工程改为 AI(人工智能)专业,并决定继续攻读 AI 硕士学位。
然而,考虑到 AI 的发展速度和 AI 系统变得如此强大,很有可能在我完成学业时,我的教育将不再重要,因为大多数软件应用程序以及可能涉及许多不同领域的许多其他应用程序/任务,都可能由 AI 系统和一小群人设计、实施和维护。
尽管如此,我希望在应用程序中实施 AI-LLM,我的梦想工作之一是将 LLM 和 AI 集成到视频游戏中。
人工智能初创公司 Inworld AI
有几家公司处于视频游戏中 AI 集成的前沿。
这些公司包括 Google DeepMind、Inworld AI、Rockstar Games、Electronic Arts (EA)、NVIDIA、Unity Technologies、Epic Games、Houdini 和 Latitude.io。
每家公司将 AI 集成到视频游戏中的方法都略有不同且有趣。
然而,这篇文章将重点介绍 Inworld AI,它专门创建和集成 AI 驱动的虚拟角色,也称为 NPC(非玩家角色)。
Inworld AI 是用于在视频游戏中添加 AI NPC 的领先角色引擎(Inworld Team,2024a)
“角色引擎是一种开发环境,它提供了一套工具和功能,可帮助游戏开发者在视频游戏中创建和部署实时生成的 AI 驱动的 NPC”(Inworld Team,2023b)。
Inworld AI 最近宣布,他们已与 Xbox/Microsoft 建立联合开发合作伙伴关系,以创建具有各种情绪和行为的 AI NPC。
这些 NPC 将具有长期记忆、目标、行动、游戏意识,“第四面墙”记住过去的游戏内互动、可配置的安全设置和动态关系。
NPC 还将具有知识约束,以确保他们只根据适合其角色的信息采取行动。
此外,Inworld 技术可以与 Unity 和 Unreal Engine 等流行游戏引擎很好地集成,开发人员利用 Inworld AI 的 API 在 Skyrim 等游戏和 Niantic 和网易游戏等公司开发的角色扮演游戏中创建智能 NPC(Weitzman,2023 年)。
Inworld 首席执行官 Gibbs (2022) 在他的博客文章“Inworld 对安全的承诺”中承认,人工智能驱动的创意技术需要仔细考虑。
他通过以下指导方针概述了 Inworld 的安全方法:
明确的限制和指导方针,通过明确的规则和指导方针来控制可以在 Inworld AI 平台上创建的内容。
开发人员控制,提供工具和控制以确保开发人员创建的内容适合其目标受众。
Inworld 平台上的所有对话和角色的报告和审核均须遵守报告和审核流程。
所有 Inworld 角色都内置有广泛的安全系统和集成护栏。
持续监控和改进,以不断监控和提高安全性。
此外,Inworld 的准则禁止创建宣扬非法活动、仇恨言论、暴力或侵犯用户隐私的角色或内容。这种方法符合大多数 AI 公司采用的道德准则。
这些准则也符合我的道德价值观使 Inworld AI 成为一家我愿意为之工作的公司。
截至 2025 年 2 月,Inworld AI 正在快速发展,提供各种职业机会,职位范围从财务总监到招聘专员。
此外,它还提供一些与我的 AI 专业和职业目标相关的机会。下表列出了这些职位及其描述和要求。
**表 2 :
**Inworld AI 职业机会软件工程/AI,2025 年 2 月
*注:*该表提供了截至 2025 年 2 月的多个 Inworld AI 软件工程/人工智能领域的职业机会。数据来自 Inworld AI (2024) 的“在 Inworld 的职业生涯将改变游戏规则”。
除了需要博士学位的职员/首席人工智能研究员职位外,我完成硕士学位后的教育水平将满足这些职位的最低要求。
但是,我缺乏所需的专业经验,因为大多数职位都是需要 3 至 6 年经验的高级职位。
这是可以理解的,因为 Inworld 是一家初创公司,需要用经验丰富的专业人士来建立自己的基础员工队伍。
希望到 2026 年 12 月(我的人工智能硕士学位预计毕业日期),会有实习或初级职位。然而,随着人工智能的出现,它能够在几秒钟内生成功能代码,而且通常质量比专家程序员更好,而且大多数初级软件工程职位主要侧重于编码而不是设计,即使公司非常成功,
Inworld AI 是否有初级软件工程职位空缺似乎也不确定。
尽管如此,我希望攻读和获得人工智能硕士学位能给我带来优势,让我在就业市场上更具竞争力。
概括
人工智能正在改变技术,为人类带来巨大利益;然而,它也从根本上重塑了人们的生活和工作方式,带来了潜在的危险和道德问题。
作为一名计算机科学专业的学生,我主要的道德担忧是它现在是如何被使用的,以及未来将如何取代人类工人,尤其是知识工人。
人工智能已经对我的教育道路和职业选择产生了重大影响。像 Inworld 这样的人工智能初创公司正在招聘软件工程师和人工智能开发人员。
然而,当我获得人工智能硕士学位时,我不能保证就业市场会和以前一样,也不能保证传统的软件工程职位会像现在这样广泛存在,因为预计代理人工智能比人类同行更高效、成本更低。
职业目标相关的机会。下表列出了这些职位及其描述和要求。
**表 2 :
**Inworld AI 职业机会软件工程/AI,2025 年 2 月
[外链图片转存中…(img-Abp3V9Ut-1747128049098)]
*注:*该表提供了截至 2025 年 2 月的多个 Inworld AI 软件工程/人工智能领域的职业机会。数据来自 Inworld AI (2024) 的“在 Inworld 的职业生涯将改变游戏规则”。
除了需要博士学位的职员/首席人工智能研究员职位外,我完成硕士学位后的教育水平将满足这些职位的最低要求。
但是,我缺乏所需的专业经验,因为大多数职位都是需要 3 至 6 年经验的高级职位。
这是可以理解的,因为 Inworld 是一家初创公司,需要用经验丰富的专业人士来建立自己的基础员工队伍。
希望到 2026 年 12 月(我的人工智能硕士学位预计毕业日期),会有实习或初级职位。然而,随着人工智能的出现,它能够在几秒钟内生成功能代码,而且通常质量比专家程序员更好,而且大多数初级软件工程职位主要侧重于编码而不是设计,即使公司非常成功,
Inworld AI 是否有初级软件工程职位空缺似乎也不确定。
尽管如此,我希望攻读和获得人工智能硕士学位能给我带来优势,让我在就业市场上更具竞争力。
概括
人工智能正在改变技术,为人类带来巨大利益;然而,它也从根本上重塑了人们的生活和工作方式,带来了潜在的危险和道德问题。
作为一名计算机科学专业的学生,我主要的道德担忧是它现在是如何被使用的,以及未来将如何取代人类工人,尤其是知识工人。
人工智能已经对我的教育道路和职业选择产生了重大影响。像 Inworld 这样的人工智能初创公司正在招聘软件工程师和人工智能开发人员。
然而,当我获得人工智能硕士学位时,我不能保证就业市场会和以前一样,也不能保证传统的软件工程职位会像现在这样广泛存在,因为预计代理人工智能比人类同行更高效、成本更低。
尽管未来似乎令人担忧,但我坚信人工智能有潜力“造福全人类”(OpenAI,2023 年);然而,确保这一点取决于人类。
大模型岗位需求
大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
零基础入门AI大模型
今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
有需要的小伙伴,可以点击下方链接免费领取【保证100%免费
】
1.学习路线图
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
👉2.大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)
大模型教程
👉3.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)
电子书
👉4.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)
大模型面试
**因篇幅有限,仅展示部分资料,**有需要的小伙伴,可以点击下方链接免费领取【保证100%免费
】
**或扫描下方二维码领取 **