后端开发Java和大模型应用开发怎么选

这问题问得还挺扎实,能看出来你是真的在做职业方向选择,不是那种“我选哪个工资高”的混子问题

一、Java 后端开发:老骥伏枥,卷得头皮发麻

Java 后端这玩意儿,说白了就是工业级老油条的战场,技术成熟,生态庞大,一言不合就是 Spring 全家桶RedisMySQL消息队列分布式中间件容器化DevOps 一锅炖,你要真想干点活,底子得硬。很多初学者一上来就被那一大堆 “xxxContext”、“AbstractXXXFactoryBean” 吓尿了。

优势:

  • 市场需求稳定:中大型企业对 Java 后端的刚需永远在。传统企业上云、金融、电商、政务系统,全是 Java 的地盘。
  • 工程体系完备:Spring Boot/Spring Cloud 那是一条龙服务,适配各种需求,你要是想在企业里稳定当个“后端搬砖侠”,Java 是一条靠谱路线。
  • 社区成熟、面试套路清晰:出一本《Java 面试手撕八股文》分分钟就上热销榜了。

问题:

  • 极度内卷:本科干不过硕士,硕士干不过 985,211 的你卷不过海归,海归卷不过导师推荐。一个增删改查都能出 5 轮面试,面试官光问 JVM 内存模型和线程死锁原理就够你嗷嗷叫。
  • 成长天花板明显:三年之后你要不转架构、做中台、往管理走,就容易卡在“高级工程师”那层。

二、大模型应用开发:风口上的猪,刮风也得先会飞

你说你导师接的都是大模型方向的横向,说实话,这就已经是资源了。不是所有人都有机会能蹭上这股 AI 的热风。你现在站在一个机会窗口,虽然说你是纯小白,但这年头谁不是摸着代码趟着火坑学出来的?

什么是大模型应用开发?

别被“Agent”、“LangChain”、“RAG”、“Dify”这些词唬住了,说白了,大模型开发分成几层:

1. 基础模型层(别碰,别想)

GPT-4LLaMA、GLM、Baichuan 这些大模型的底层,你没 TPU、没万卡集群、没亿级数据、没十年 NLP 背景,别碰,碰了也是陪跑。

2. 中间件层(有点东西)

LangChain、LlamaIndex 这些是帮你把大模型“调教成能干活”的工具,比如多轮对话、插件机制、内存管理、工具调用能力。这些东西像极了当年的 Spring Boot:框架层、扩展性、抽象封装,越早上手越吃香。

3. 应用层(主战场)

也就是现在卷得最狠的一层:RAG 检索增强生成、Agent 自动化任务执行、AI 工具集成(像 Dify、Flowise 这类)、接大模型做 Copilot、AI 问答、AI 流程机器人……这些都属于应用层。这是你真正可以卷进去的地方。


三、如果你要卷大模型方向,该怎么学?

Step 1:大模型底层原理过一遍(别跳,跳了你迟早栽坑)

  • transformer 架构self-attention 怎么计算的、embedding 向量到底是啥
  • tokenizer 是怎么切词的,prompt engineering 原理是啥
  • RAG 为啥好用?retriever 怎么做?search index 能不能用向量数据库?

推荐路线

  • 把《The Illustrated Transformer》过一遍

  • 看《LangChain 官方教程》,GitHub 上 Star 数第一的 repo

  • 拿几个项目跑通,比如:

    • LangChain + OpenAI + Pinecone 的 RAG 应用
    • 用 Dify 搭建一个问答机器人平台
    • 自己搞个 Agent 流程,让大模型帮你爬网页、写报告、总结

Step 2:补课,特别是这些:

  • Python 要熟练,至少熟到能写清晰的 class、搞明白 asyncio
  • 前端最好有点概念,Dify、Flowise 都有前端页面,Vue / React 稍微懂点
  • API 集成能力、部署能力,像 Docker、FastAPI、Redis 缓存这些老朋友都还在
  • 数据库 + 向量数据库 combo:传统 MySQL + pgvector、Milvus、FAISS

四、大模型应用市场到底咋样?

现在是风口,3 年后是常态,能不能吃肉,看你卷不卷。

  • 大厂已经把大模型接入办公套件了,To B 的 AI Copilot 正在落地。
  • 中厂、小厂全在搞私有化部署大模型,用国产模型 + 向量搜索搞知识库问答。
  • 创业公司也在疯狂堆功能,AI 写简历、写代码、写合同、审计、财税、聊天机器人、心理咨询……

说白了,大模型应用是未来 5-10 年的 Web 前端 + 移动开发 + 云原生的合集,你现在不进来,以后就只能当“工具用户”。


五、到底选哪个?

Java 后端适合谁:

  • 想稳定、进大厂、长期搬砖的
  • 喜欢搞系统、做业务、撸服务
  • 不想年年追技术热潮的

大模型应用开发适合谁:

  • 能扛住变化,愿意学新东西、做实验、搭流程
  • 对产品/交互有点感觉,喜欢做“能跑起来的东西”
  • 想未来几年趁早吃 AI 的红利,别再追尾了

最后一句掏心窝子的话:

你要是已经在导师项目里能接触到 LangChain、Agent 这些,就别犹豫了,往 AI 方向冲一把。

现在 Java 后端多你一个不多,少你一个不少;但大模型这摊水还浅,早踩进去的,才有可能摸到金子。

想躺平可以选 Java,想翻身就别错过 AI。兄弟,天要下雨娘要嫁人,风口来都来了,不飞你等啥?

大模型岗位需求

大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》*

1.学习路线图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
在这里插入图片描述

👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

大模型教程

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

电子书

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,**有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

**或扫描下方二维码领取 **

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值