剑指 Offer 42. 连续子数组的最大和

看题目感觉是动态规划
然后列举分析一下,发现 过程中有些结果是重叠的
规律为 nums中索引为n的数,其子数组最大值为 Math.max(索引为 n-1的最大子数组加上自己本身(数组中该索引本身的数),自己本身)
得出:

初始状态:f0 = nums[0]
转移方程:fn+1 = fn + nums[n+1] 或 fn+1
fn = fn-1 + nums[n] 或 fn
最优子结构:fn

/** 到索引为n的数,其子数组最大值为 索引为 Math.max(n-1的最大子数组加上自己,自己本身)*/
    public int maxSubArray(int[] nums) {
        /** 初始状态:f0 = nums[0]
         *  转移方程:fn+1 = fn + nums[n+1] 或 fn+1
                           fn = fn-1 + nums[n] 或 fn
         *  最优子结构:fn*/
        int[] max = new int[nums.length];
        int result = nums[0];

        for (int i = 0; i <= nums.length-1; i++){
            if (i == 0) max[0] = nums[0];
            else {
                max[i] = Math.max(max[i-1] + nums[i],nums[i]);
                result = Math.max(max[i],result);//将当前索引的最大值和之前最大值比较,放入结果中
            }
        }
        return result;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值