Adaboost

原理介绍:

(1)初始化训练数据(每个样本)的权值分布:如果有N个样本,则每一个训练的样本点最开始时都被赋予相同的权重:1/N。 
(2)训练弱分类器。具体训练过程中,如果某个样本已经被准确地分类,那么在构造下一个训练集中,它的权重就被降低;相反,如果某个样本点没有被准确地分类,那么它的权重就得到提高。同时,得到弱分类器对应的话语权。然后,更新权值后的样本集被用于训练下一个分类器,整个训练过程如此迭代地进行下去。 
(3)将各个训练得到的弱分类器组合成强分类器。各个弱分类器的训练过程结束后,分类误差率小的弱分类器的话语权较大,其在最终的分类函数中起着较大的决定作用,而分类误差率大的弱分类器的话语权较小,其在最终的分类函数中起着较小的决定作用。换言之,误差率低的弱分类器在最终分类器中占的比例较大,反之较小。
 

 

算法流程:

(1)初始化训练数据的权值分布:给每个训练样本(x1,x2,….,xN)分配权重,初始权重w1均为1/N。

                                     D1 = {w11,w12,....,w1i,.....,w1N},  i = 1,2,3, ..... , N          w1i = 1/N

(2)对于要生成M个基学习器,则对于m = 1,2,.....,M:

 

         (a)、针对带有权值的样本进行训练,得到模型Gm(初始模型为G1):

                                             G_{m}(x) : \chi \rightarrow\{-1,+1\}

           ( b )、 计算Gm(x)在训练数据集上的分类误差率:

                                             e_{m}=P\left(G_{m}(x) \neq y\right)=\sum_{i=1}^{N} w_{m i} I\left(G_{m}\left(x_{i}\right) \neq y_{i}\right)

                                             上式还可以写为:

                                            e_{m}=P\left(G_{m}(x) \neq y\right)=\sum_{G_{m}\left(x_{i}\right) \neq y_{i}} w_{m i}        

                                                     #这里,Wmi表示第m轮中第i个实例的权值,Wm1+Wm1+......+Wmn = 1, 这表明,Gm(x)在加权的训练数据集上的分类误差率是被Gm(x)误分类样本的权值之  和,由此可以看出数据权值分布Dm与基本分类器Gm(x)的分类误差率的关系

                                                                                                            

                                                     

            (c)、计算基学习器Gm(x)的系数:+

                                                           \alpha_{m}=\frac{1}{2} \log \frac{1-e_{m}}{e_{m}}              #这里的对数是自然对数

            

             (d)、更新训练数据集的权重分布:D_{m+1}=\left\{w_{m+1,1}, \ldots, w_{m+1, i}, \ldots, w_{m+1, N}\right\}

                                       w_{m+1, j}=\frac{w_{m i}}{Z_{m}} \exp \left(-\alpha_{m} y_{i} G_{m}(x)\right)=\left\{\begin{array}{l}{\frac{w_{m i}}{Z_{m}} \exp \left(-\alpha_{m}\right), G_{m}\left(x_{i}\right)=y_{i}} \\ {\frac{w_{m i}}{Z_{m}} \exp \left(\alpha_{m}\right), G_{m}\left(x_{i}\right) \neq y_{i}}\end{array}\right.

                                                       其中Zm为:

                                                         Z_{m}=\sum_{i=1}^{N} \alpha_{m} \exp \left(-\alpha_{m} y_{i} G_{m}(x)\right)

                                                                          

(3)构建基本分类器的线性组合:

                                                                   f(x)=\sum_{m=1}^{M} \alpha_{m} G_{m}(x)

         得到最终的分类器:

                                                             G(x)=\operatorname{sign}(f(x))=\operatorname{sign}\left(\sum_{m=1}^{M} \alpha_{m} G_{m}(x)\right)

 

                              

                             

                               

 

 

   

 

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值