题目
M个相同苹果放到N个相同篮子里有多少种放法,允许有篮子不放。
1<=M<=10,1<=N<=10
例如5个苹果三个篮子,3,1,1 和 1,1,3是同一种放法
输入 7 3
输出 8
package test;
public class dfess {
public static void main(String[] args) {
// TODO Auto-generated method stub
System.out.println(sharingApple(7,3));
}
public static int sharingApple(int m,int n)
{
if(m==1||n==1||m==0) return 1;//苹果的数量为0的时候,苹果数量为1的时候,盘子的数量为1的时候
if(m<n) return sharingApple(m,m);//当盘子的数量大于苹果的数量,直接等于f(m,m);
//当苹果的数量大于盘子的数量的时候分为两种情况1.苹果全放到盘子里,2.至少有一个盘子没有苹果
else return sharingApple(m-n,n)+sharingApple(m,n-1);
}
}
设f(m,n) 为m个苹果,n个盘子的放法数目:
当n>m也就是盘子的数量大于苹果的数量:必定有n-m个盘子永远空着,去掉它们对摆放苹果方法数目不产生影响。即if(n>m) f(m,n) = f(m,m)
当n<=m苹果的数量大于盘子的数量:不同的放法可以分成两类: 分为全放,或者至少一个盘子不放
(1)有至少一个盘子空着,即相当于f(m,n) = f(m,n-1);
(2)所有盘子都有苹果,相当于可以从每个盘子中拿掉一个苹果,不影响不同放法的数目,即f(m,n) = f(m-n,n).而总的放苹果的放法数目等于两者的和,即 f(m,n) =f(m,n-1)+f(m-n,n)
递归出口条件说明:
当n=1时,所有苹果都必须放在一个盘子里,所以返回1;
当没有苹果可放时,定义为1种放法;
递归的两条路,第一条n会逐渐减少,终会到达出口n1;
第二条m会逐渐减少,因为n>m时,我们会return f(m,m) 所以终会到达出口m0.