深度学习
月~枫
这个作者很懒,什么都没留下…
展开
-
1.卷积反向传播
1.x[0,0;,;] x[n,c,h,w] n表示样本标号,一般是一个batch一个batch输入的 ,0表示样本标号为0 c 表示图像的channel 对于灰度图来讲有三个r g b h 表示图像的高 w 表示图像的宽 2.池化 mean forward:[1 3;2 2]->[2] backward[2] ->[0.5 0.5; 0.5 0.5] max forward:[1...原创 2019-07-24 11:11:55 · 342 阅读 · 0 评论 -
最优化形象解读
最优化 前向传播 1.梯度下降 Bachsize 通常是2的倍数(32, 64,128) while True: data_batch = sample_training_data(data,256)#sample 256 examples weights_grad = evaluate_gradient(loss_fun,data_batch,weights) weights +=-ste...原创 2019-07-22 21:04:11 · 214 阅读 · 0 评论