主要尝试回答下面几个问题:
- 一般情况下,使用 hash 结构,需要有桶的概念,那么 unordered_map 是如何自动管理桶的,这个问题其实再细分的话是这样的:
- 初始的桶是如何设置的
- 当需要扩容的时候,是如何重新分布的
- 对于 string,unordered_map 的默认哈希函数是怎样的
需要注意的是,unorder_map 和 unorder_set,其实都是一个封装而已,底下用的是 hashtable,所以分析也着重分析 hashtable
最根本的区别为底层的实现机制不同,map底层实现为红黑时,hash_map为hash表,所以就有一些其他方面的不同:
1)map存储的时候为排好序的,所以输出时候也是排序的。而hash_map不是的。
2)map具有稳定性,底层存储为树,这种算法差不多相当与list线性容器的折半查找的效率一样,都是O (log2N)。而hash_map使用hash表来排列配对,hash表是使用关键字来计算表位置。当这个表的大小合适,并且计算算法合适的情况下,hash表的算法复杂度为O(1)的,但是这是理想的情况下的,如果hash表的关键字计算与表位置存在冲突,那么最坏的复杂度为O(n)。 map在一次查找中,你可以断定它最坏的情况下其复杂度不会超过O(log2N)。而hash表就不一样,是O(1),还是O(N),或者在其之间,你并不能把握。
我觉得如果数量级很小,不到w,那么使用map和hash_map的区别不大,速度,稳定性都相差不大。但是如果数量级很大,就要考虑是要平均效率高,还是稳定性好了,如果用hash_map那么可以自己来根据经验来设定hash函数优化速度。而如果算法对稳定性要求高的话,首选map。
不过gnu hash_map和c++ stl的api不兼容,c++ tr1(C++ Technical Report1)作为标准的扩展,实现了hash map,提供了和stl兼容一致的api,称为unorder_map.在头文件 <tr1/unordered_map>中。另外c++ tr1还提供了正则表达式、智能指针、hash table、 随机数生成器的功能。
Linux 下的hash_map
- #include <iostream>
- #include <string>
- #include <tr1/unordered_map>
- using namespace std;
- int main(){
- typedef std::tr1::unordered_map<int,string> hash_map;
- hash_map hm;
- hm.insert(std::pair<int,std::string>(0,"Hello"));
- hm[1] = "World";
- for(hash_map::const_iterator it = hm.begin(); it != hm.end(); ++it){
- cout << it->first << "-> " << it->second << endl;
- }
- return 0;
- }
先来看一个典型的操作,[ ] 运算符,在 679 行附近,有这样的代码
template<typename K, typename Pair, typename Hashtable>
typename map_base<K, Pair, extract1st<Pair>, true, Hashtable>::mapped_type&
map_base<K, Pair, extract1st<Pair>, true, Hashtable>::
operator[](const K& k)
{
Hashtable* h = static_cast<Hashtable*>(this);
typename Hashtable::hash_code_t code = h->m_hash_code(k);
std::size_t n = h->bucket_index(k, code, h->bucket_count());
typename Hashtable::node* p = h->m_find_node(h->m_buckets[n], k, code);
if (!p)
return h->m_insert_bucket(std::make_pair(k, mapped_type()),
n, code)->second;
return (p->m_v).second;
}
可以看到,这是典型的 hash 操作的写法
- 先对 key 算出 hash code
- 找到这个 hash code 对应的桶
- 在这个桶里面,遍历去找这个 key 对应的节点
- 把节点返回
需要注意的是,如果找不到节点,不是返回空,而是会创建一个新的空白节点,然后返回这个空白节点,这里估计是受到返回值的约束,因为返回值声明了必须为一个引用,所以总得搞一个东西出来才能有的引用
接下来看初始化过程,gdb 跟踪代码可以发现,在 /usr/include/c++/4.1.2/tr1/unordered_map:86,有下面这样的代码,可以看到,初始化的桶大小,被写死为 10。
explicit
unordered_map(size_type n = 10,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type())
: Base(n, hf, Internal::mod_range_hashing(),
Internal::default_ranged_hash(),
eql, Internal::extract1st<std::pair<const Key, T> >(), a)
{ }
但是,我们看一下下面这个代码的输出
#include <tr1/unordered_map>
#include <string>
#include <stdio.h>
int main() {
std::tr1::unordered_map<std::string, int> m;
printf("%d\n", m.bucket_count());
return 0;
}
输出是 11。为什么呢,这个涉及到 rehash。他是初始化为 10,然后 rehash 为 11 了。
rehash 有两个问题,一个是判断什么时候需要 rehash,一个是什么时候需要 rehash,一个是怎么 rehash。
need_rehash 在 hasttable 的 614 附近:
inline std::pair<bool, std::size_t>
prime_rehash_policy::
need_rehash(std::size_t n_bkt, std::size_t n_elt, std::size_t n_ins) const
{
if (n_elt + n_ins > m_next_resize)
{
float min_bkts = (float(n_ins) + float(n_elt)) / m_max_load_factor;
if (min_bkts > n_bkt)
{
min_bkts = std::max(min_bkts, m_growth_factor * n_bkt);
const unsigned long* const last = X<>::primes + X<>::n_primes;
const unsigned long* p = std::lower_bound(X<>::primes, last,
min_bkts, lt());
m_next_resize =
static_cast<std::size_t>(std::ceil(*p * m_max_load_factor));
return std::make_pair(true, *p);
}
else
{
m_next_resize =
static_cast<std::size_t>(std::ceil(n_bkt * m_max_load_factor));
return std::make_pair(false, 0);
}
}
else
return std::make_pair(false, 0);
}
来看他是怎么做的,首先是用一个 m_max_load_factor 的因子来判断目前的容量需要多少个哈希桶,如果需要 rehash,那么使用素数表来算出新的桶需要多大。
素数表在 491 行附近:
template<int ulongsize>
const unsigned long X<ulongsize>::primes[256 + 48 + 1] =
{
2ul, 3ul, 5ul, 7ul, 11ul, 13ul, 17ul, 19ul, 23ul, 29ul, 31ul,
初始的时候,m_max_load_factor(1), m_growth_factor(2), m_next_resize(0),根据 std::lower_bound 来找到比 10 大的最小素数是 11,于是就分配为 11 个桶。
rehash 就很平淡无奇了,一个一个重算,然后重新填进去,没有什么特别的。
template<typename K, typename V,
typename A, typename Ex, typename Eq,
typename H1, typename H2, typename H, typename RP,
bool c, bool ci, bool u>
void
hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, ci, u>::
m_rehash(size_type n)
{
node** new_array = m_allocate_buckets(n);
try
{
for (size_type i = 0; i < m_bucket_count; ++i)
while (node* p = m_buckets[i])
{
size_type new_index = this->bucket_index(p, n);
m_buckets[i] = p->m_next;
p->m_next = new_array[new_index];
new_array[new_index] = p;
}
m_deallocate_buckets(m_buckets, m_bucket_count);
m_bucket_count = n;
m_buckets = new_array;
}
catch(...)
{
// A failure here means that a hash function threw an exception.
// We can't restore the previous state without calling the hash
// function again, so the only sensible recovery is to delete
// everything.
m_deallocate_nodes(new_array, n);
m_deallocate_buckets(new_array, n);
m_deallocate_nodes(m_buckets, m_bucket_count);
m_element_count = 0;
__throw_exception_again;
}
}
然后就是 hash 函数了。hash 函数位于 /usr/include/c++/4.1.2/tr1/functional:1194,对于 std::string,用的是下面这种 hash 函数
template<>
struct Fnv_hash<8>
{
static std::size_t
hash(const char* first, std::size_t length)
{
std::size_t result = static_cast<std::size_t>(14695981039346656037ULL);
for (; length > 0; --length)
{
result ^= (std::size_t)*first++;
result *= 1099511628211ULL;
}
return result;
}
};
这个叫 FNV hash,http://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function ,FNV 有分版本,例如 FNV-1 和 FNV-1a,区别其实就是先异或再乘,或者先乘在异或,这里用的是 FNV-1a,为什么呢,维基里面说,The small change in order leads to much better avalanche characteristics,什么叫 avalanche characteristics 呢,这个是个密码学术语,叫雪崩效应,意思是说输入的一个非常微小的改动,也会使最终的 hash 结果发生非常巨大的变化,这样的哈希效果被认为是更好的。