Fibonacci 前 n 项和(矩阵快速幂)

题意:F[ 1 ] = 1 , F[ 2 ] = 1 , F[ 3 ] = F[ 2 ] + F[ 1 ] ,....F[ n ] = F[ n-1 ] + F[ n-2 ]。给你两个数 n 和 m ,求前 n 项斐波那契的和对 m 求余的值。

思路:打表可推导出 S[ n ] = S[ n-1 ] + S[ n-2 ] + 1;很明显用矩阵快速幂做。构造矩阵链接:https://blog.csdn.net/HXX904/article/details/116735993?spm=1001.2014.3001.5501

AC代码:

/*
求斐波那契的前n项和对mod求余
打表可推导出s[n]=s[n-1]+s[n-2]+1;
*/
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=4;
ll base[N][N];
ll tmp[N][N];
ll n,mod;
void Init()//初始化构造的矩阵
{
    base[1][1]=0;
    base[1][2]=1;
    base[1][3]=0;
    base[2][1]=1;
    base[2][2]=1;
    base[2][3]=0;
    base[3][1]=0;
    base[3][2]=1;
    base[3][3]=1;
}
void mult(ll x[N][N],ll y[N][N])//矩阵相乘
{
    ll tmp[N][N];
    for(int i=1;i<N;i++)
        for(int j=1;j<N;j++){
            tmp[i][j]=0;
            for(int k=1;k<N;k++)
                tmp[i][j]=(tmp[i][j]+x[i][k]*y[k][j])%mod;
        }
    memcpy(x,tmp,sizeof(tmp));//复制函数
}
ll fpow(ll b)//矩阵快速幂
{
    ll ans[N][N];
    memcpy(ans,base,sizeof(base));
    while(b)
    {
        if(b&1)mult(ans,base);
        mult(base,base);
        b/=2;
    }
    return (1*ans[1][2]+2*ans[2][2]+1*ans[3][2])%mod;
}
int main()
{
    Init();
    cin>>n>>mod;
    if(n==1)printf("1\n");
    else if(n==2)printf("%lld\n",n%mod);
    else printf("%lld\n",fpow(n-3));
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值