【SSL 1529】 裴波拉契数列II【矩阵乘法】

Time Limit:1000MS Memory Limit:65536K
Total Submit:124 Accepted:52


Description

形如 1 1 2 3 5 8 13 21 34 55 89 144…的数列,求裴波拉契数列的第n项。


Input

n ( 1 < n < 2 3 1 ) n (1< n <2^31) n(1<n<231

Output

一个数为裴波拉契数列的第 n n n m o d 10000 mod 10000 mod10000;


Sample Input

123456789

Sample Output

4514


Source
elba


解题思路

矩阵乘法

考虑1×2的矩阵 【 f [ n − 2 ] , f [ n − 1 ] 】 【f[n-2],f[n-1]】 f[n2],f[n1]。根据fibonacci数列的递推关系,我们希望通过乘以一个 2 × 2 2×2 2×2的矩阵,得到矩阵 【 f [ n − 1 ] , f [ n ] 】 = 【 f [ n − 1 ] , f [ n − 1 ] + f [ n − 2 ] 】 【f[n-1],f[n]】=【f[n-1],f[n-1]+f[n-2]】 f[n1],f[n]=f[n1],f[n1]+f[n2]很容易构造出这个 2 × 2 2×2 2×2矩阵 A A A,即:
在这里插入图片描述
所以,有 【 f [ 1 ] , f [ 2 ] 】 × A = 【 f [ 2 ] , f [ 3 ] 】 【f[1],f[2]】×A=【f[2],f[3]】 f[1],f[2]×Af[2],f[3]
又因为矩阵乘法满足结合律,故有:
【 f [ 1 ] , f [ 2 ] 】 × A n − 1 = 【 f [ n ] , f [ n + 1 ] 】 【f[1],f[2]】×A n-1=【f[n],f[n+1]】 f[1],f[2]×An1=f[n],f[n+1]
这个矩阵的第一个元素即为所求。


代码

#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
const int INF=10000;
long long n;
using namespace std;
struct c{
	int n,m;
	int a[10][10];
}A,B,CC;
c operator *(c A,c B){
	c C;
	C.n=A.n,C.m=B.m;
	for(int i=1;i<=C.n;i++)
		for(int j=1;j<=C.m;j++)
			C.a[i][j]=0;
	for(int k=1;k<=A.m;k++)
	{
		for(int i=1;i<=C.n;i++)
			for(int j=1;j<=C.m;j++)
				C.a[i][j]=(C.a[i][j]+(A.a[i][k]*B.a[k][j])%INF)%INF;
	}	
	return C;
}
void poww(long long x){
	if(x==1)
	{
		B=A;
		return; 
	}
	poww(x>>1);
	B=B*B;
	if(x&1)
		B=B*A;
	
}
int main(){
	scanf("%lld",&n);
	if(n==1){
		printf("1");
		return 0;
	}
	A.n=2,A.m=2;
	A.a[1][1]=0,A.a[1][2]=1,A.a[2][1]=1,A.a[2][2]=1;
	poww(n-1);
	CC.n=1,CC.m=2;
	CC.a[1][1]=1,CC.a[1][2]=1;
	CC=CC*B;
	printf("%d\n",CC.a[1][1]);
	
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值