给定一个正整数 n
,将其拆分为 k
个 正整数 的和( k >= 2
),并使这些整数的乘积最大化。
返回 你可以获得的最大乘积 。
思路:有个结论,尽可能的拆成3,可以让乘积最大(最后剩余4的时候不再拆成3和1)
如果用动态规划的思路:递推公式 dp[i] =max(dp[i],max((i-j)*j,dp[i-j]*j))。
class Solution {
public:
int integerBreak(int n) {
vector<int> dp(n+1);
dp[2]=1;
for(int i=3;i<=n;i++)
{
for(int j=1;j<=i/2;j++)
{
dp[i]=max(dp[i],max((i-j)*j,dp[i-j]*j));
}
}
return dp[n];
}
};