Imagination

【Description】

 

 There are four matrixs blow , Can you image the NEXT matrix from thegiven information?

 【Input】

 

  Thefirst line is a integer which represents the case number .

  Foreach test case , there will be a line which contains a integer N(1<=N<=100).

 

【Output】

 

  Output the matrix which has N*N integers. Be careful that there is ablank space between two integer but no blank space after the last integer in aline.

 

【Sample Input】

 

4

1

2

3

4

 

 

 

【Sample Output】

 

1

1 2

4 3

1 2 3

8 7 4

9 6 5

1 2 3 4

12 11 10 5

13 14 9 6

16 15 8 7

#include<iostream>
#include<cstdio>
using namespace std;

#define MAX(a,b) ((a)>(b) ? (a):(b))
#define MIN(a,b) ((a)<(b) ? (a):(b))

int a[102][102];

void Dealr(int x,int y,int m,int n)
{
	int i;
	for(i=y;m!=n+1;i++) a[x][i]=m++;
}

void Deald(int x,int y,int m,int n)
{
	int i;
	for(i=x;m!=n+1;i++) a[i][y]=m++;
}

void Dealu(int x,int y,int m,int n)
{
	int i;
	for(i=x;m!=n+1;i--) a[i][y]=m++;
}

void Deall(int x,int y,int m,int n)
{
	int i;
	for(i=y;m!=n+1;i--) a[x][i]=m++;
}

int main()
{
	int t;
	scanf("%d",&t);
	while(t--)
	{
		int n,i,j,t1,t2;
		scanf("%d",&n);
		t1=1; t2=n;
		Dealr(1,1,t1,t2);
		t1+=n-1; t2+=n-1;
		Deald(1,n,t1,t2);
		t1+=n; t2+=n-1;
		for(i=2;i<n;i++)
		{
			if(i%2)
			{
				Dealr(i,1,t1,t2);
				t1+=n-i; t2+=n-i;
				Deald(i,n-i+1,t1,t2);
				t1+=n-i+1; t2+=n-i;
			}
			else
			{
				Dealu(n,n-i+1,t1,t2);
				t1+=n-i; t2+=n-i;
				Deall(i,n-i+1,t1,t2);
				t1+=n-i+1; t2+=n-i;
			}
		}
		a[n][1]=n*n;
		for(i=1;i<=n;i++)
		{
			for(j=1;j<n;j++)
		    {
				printf("%d ",a[i][j]);	
		    }
		    printf("%d\n",a[i][n]);
		}
	}
	return 0;
}


内容概要:本文档详细介绍了一个利用Matlab实现Transformer-Adaboost结合的时间序列预测项目实例。项目涵盖Transformer架构的时间序列特征提取与建模,Adaboost集成方法用于增强预测性能,以及详细的模型设计思路、训练、评估过程和最终的GUI可视化。整个项目强调数据预处理、窗口化操作、模型训练及其优化(包括正则化、早停等手段)、模型融合策略和技术部署,如GPU加速等,并展示了通过多个评估指标衡量预测效果。此外,还提出了未来的改进建议和发展方向,涵盖了多层次集成学习、智能决策支持、自动化超参数调整等多个方面。最后部分阐述了在金融预测、销售数据预测等领域中的广泛应用可能性。 适合人群:具有一定编程经验的研发人员,尤其对时间序列预测感兴趣的研究者和技术从业者。 使用场景及目标:该项目适用于需要进行高质量时间序列预测的企业或机构,比如金融机构、能源供应商和服务商、电子商务公司。目标包括但不限于金融市场的波动性预测、电力负荷预估和库存管理。该系统可以部署到各类平台,如Linux服务器集群或云计算环境,为用户提供实时准确的预测服务,并支持扩展以满足更高频率的数据吞吐量需求。 其他说明:此文档不仅包含了丰富的理论分析,还有大量实用的操作指南,从项目构思到具体的代码片段都有详细记录,使用户能够轻松复制并改进这一时间序列预测方案。文中提供的完整代码和详细的注释有助于加速学习进程,并激发更多创新想法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值