实现目标:
1、加载一张图片,应用深度学习框架Caffe训练好的模型分类图片,显示图片的类别,输出到控制台;
2、加载一个文件夹,分类所有文件夹内的图片,非图片文件选择无视,生成同名txt保存所属类别。
3、工程project实现
一、/home/name/caffe-master/examples/cpp_classification/classification.cpp这个文件是调用Caffe框架接口的事例,它对应的程序是这个:/home/name/caffe-master/build/examples/cpp_classification/classification.bin
运行这个程序并填上网络、模型、均值文件、标签参数和图片即可对单张图片进行分类。C++分类的调用接口也参照这个CPP。
二、现在仿照这个CPP对本地某个文件内的所有jpg图片分类。假设需要对某些输入的照片进行分类,修改图片来源接口即可。
txt按行为程序提供参数:文件夹名、模型网络、模型、均值文件、标签
修改如下:
//#define USE_OPENCV
#include <caffe/caffe.hpp>
#ifdef USE_OPENCV
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#endif // USE_OPENCV
#include <algorithm>
#include <iosfwd>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include <sys/types.h>
#include<dirent.h>
#include<stdio.h>
#include<sys/stat.h>
#include<iostream>
#include<fstream>
//下面这行不可用!
//using namespace std;
#ifdef USE_OPENCV
using namespace caffe; // NOLINT(build/namespaces)
using std::string;
/* Pair (label, confidence) representing a prediction. */
typedef std::pair<string, float> Prediction;
class Classifier {
public:
Classifier(const string& model_file,
const string& trained_file,
const string& mean_file,
const string& label_file);
std::vector<Prediction> Classify(const cv::Mat& img, int N = 5);
private:
void SetMean(const string& mean_file);
std::vector<float> Predict(const cv::Mat& img);
void WrapInputLayer(std::vector<cv::Mat>* input_channels);
void Preprocess(const cv::Mat& img,
std::vector<cv::Mat>* input_channels);
private:
shared_ptr<Net<float> > net_;
cv::Size input_geometry_;
int num_channels_;
cv::Mat mean_;
std::vector<string> labels_;
};
Classifier::Classifier(const string& model_file,
const string& trained_file,
const string& mean_file,
const string& label_file) {
#ifdef CPU_ONLY
Caffe::set_mode(Caffe::CPU);
#else
Caffe::set_mode(Caffe::GPU);
#endif
/* Load the network. */
net_.reset(new Net<float>(model_file, TEST));
net_->CopyTrainedLayersFrom(trained_file);
CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";
Blob<float>* input_layer = net_->input_blobs()[0];
num_channels_ = input_layer->channels();
CHECK(num_channels_ == 3 || num_channels_ == 1)
<< "Input layer should have 1 or 3 channels.";
input_geometry_ = cv::Size(input_layer->width(), input_layer->height());
/* Load the binaryproto mean file. */
SetMean(mean_file);
/* Load labels. */
std::ifstream labels(label_file.c_str());
CHECK(labels) << "Unable to open labels file " << label_file;
string line;
while (std::getline(labels, line))
labels_.push_back(string(line));
Blob<float>* output_layer = net_->output_blobs()[0];
CHECK_EQ(labels_.size(), output_layer->channels())
<< "Number of labels is different from the output layer dimension.";
}
static bool PairCompare(const std::pair<float, int>& lhs,
const std::pair<float, int>& rhs) {
return lhs.first > rhs.first;
}
/* Return the indices of the top N values of vector v. */
static std::vector<int> Argmax(const std::vector<float>& v, int N) {
std::vector<std::pair<float, int> > pairs;
for (size_t i = 0; i < v.size(); ++i)
pairs.push_back(std::make_pair(v[i], i));
std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);
std::vector<int> result;
for (int i = 0; i < N; ++i)
result.push_back(pairs[i].second);
return result;
}
/* Return the top N predictions. */
std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) {
std::vector<float> output = Predict(img);
N = std::min<int>(labels_.size(), N);
std::vector<int> maxN = Argmax(output, N);
std::vector<Prediction> predictions;
for (int i = 0; i < N; ++i) {
int idx = maxN[i];
predictions.push_back(std::make_pair(labels_[idx], output[idx]));
}
return predictions;
}
/* Load the mean file in binaryproto format. */
void Classifier::SetMean(const string& mean_file) {
BlobProto blob_proto;
ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);
/* Convert from BlobProto to Blob<float> */
Blob<float> mean_blob;
mean_blob.FromProto(blob_proto);
CHECK_EQ(mean_blob.channels(), num_channels_)
<< "Number of channels of mean file doesn't match input layer.";
/* The format of the mean file is planar 32-bit float BGR or grayscale. */
std::vector<cv::Mat> channels;
float* data = mean_blob.mutable_cpu_data();
for (int i = 0; i < num_channels_; ++i) {
/* Extract an individual channel. */
cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
channels.push_back(channel);
data += mean_blob.height() * mean_blob.width();
}
/* Merge the separate channels into a single image. */
cv::Mat mean;
cv::merge(channels, mean);
/* Compute the global mean pixel value and create a mean image
* filled with this value. */
cv::Scalar channel_mean = cv::mean(mean);
mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
}
std::vector<float> Classifier::Predict(const cv::Mat& img) {
Blob<float>* input_layer = net_->input_blobs()[0];
input_layer->Reshape(1, num_channels_,
input_geometry_.height, input_geometry_.width);
/* Forward dimension change to all layers. */
net_->Reshape();
std::vector<cv::Mat> input_channels;
WrapInputLayer(&input_channels);
Preprocess(img, &input_channels);
net_->Forward();
/* Copy the output layer to a std::vector */
Blob<float>* output_layer = net_->output_blobs()[0];
const float* begin = output_layer->cpu_data();
const float* end = begin + output_layer->channels();
return std::vector<float>(begin, end);
}
/* Wrap the input layer of the network in separate cv::Mat objects
* (one per channel). This way we save one memcpy operation and we
* don't need to rely on cudaMemcpy2D. The last preprocessing
* operation will write the separate channels directly to the input
* layer. */
void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
Blob<float>* input_layer = net_->input_blobs()[0];
int width = input_layer->width();
int height = input_layer->height();
float* input_data = input_layer->mutable_cpu_data();
for (int i = 0; i < input_layer->channels(); ++i) {
cv::Mat channel(height, width, CV_32FC1, input_data);
input_channels->push_back(channel);
input_data += width * height;
}
}
void Classifier::Preprocess(const cv::Mat& img,
std::vector<cv::Mat>* input_channels) {
/* Convert the input image to the input image format of the network. */
cv::Mat sample;
if (img.channels() == 3 && num_channels_ == 1)
cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
else if (img.channels() == 4 && num_channels_ == 1)
cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
else if (img.channels() == 4 && num_channels_ == 3)
cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
else if (img.channels() == 1 && num_channels_ == 3)
cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
else
sample = img;
cv::Mat sample_resized;
if (sample.size() != input_geometry_)
cv::resize(sample, sample_resized, input_geometry_);
else
sample_resized = sample;
cv::Mat sample_float;
if (num_channels_ == 3)
sample_resized.convertTo(sample_float, CV_32FC3);
else
sample_resized.convertTo(sample_float, CV_32FC1);
cv::Mat sample_normalized;
cv::subtract(sample_float, mean_, sample_normalized);
/* This operation will write the separate BGR planes directly to the
* input layer of the network because it is wrapped by the cv::Mat
* objects in input_channels. */
cv::split(sample_normalized, *input_channels);
CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
== net_->input_blobs()[0]->cpu_data())
<< "Input channels are not wrapping the input layer of the network.";
}
//遍历文件夹类文件名函数
char filename[256][256];
int len = 0;
int trave_dir(char* path, int depth)
{
DIR *d; //声明一个句柄
struct dirent *file; //readdir函数的返回值就存放在这个结构体中
struct stat sb;
if(!(d = opendir(path)))
{
printf("error opendir %s!!!\n",path);
return -1;
}
while((file = readdir(d)) != NULL)
{
//把当前目录.,上一级目录..及隐藏文件都去掉,避免死循环遍历目录
if(strncmp(file->d_name, ".", 1) == 0)
continue;
strcpy(filename[len++], file->d_name); //保存遍历到的文件名
//判断该文件是否是目录,及是否已搜索了三层,这里我定义只搜索了三层目录,太深就不搜了,省得搜出太多文件
//stat
if(stat(file->d_name, &sb) >= 0 && S_ISDIR(sb.st_mode) && depth <= 3)
{
trave_dir(file->d_name, depth + 1);
}
}
closedir(d);
return 0;
}
int main(int argc, char** argv) {
// if (argc != 6) {
// std::cerr << "Usage: " << argv[0]
// << " deploy.prototxt network.caffemodel"
// << " mean.binaryproto labels.txt img.jpg" << std::endl;
// return 1;
// }
::google::InitGoogleLogging(argv[0]);
string ar[10];
if(argc!=2){
std::cerr<<"程序需要一个包含5行文本的参数:"<<std::endl<<"第1行文件夹名(含路径),然后各行依次分别是模型网络、模型、均值文件、标签"<<std::endl;
return 1;
}
fstream arg_file;
arg_file.open(argv[1]);
if(!arg_file){
std::cerr<<"打不开参数文件"<<std::endl;
return 1;
}
else{
for(int i=0;!arg_file.eof();i++){
getline(arg_file,ar[i],'\n');
}
}
// string model_file = argv[1];
// string trained_file = argv[2];
// string mean_file = argv[3];
// string label_file = argv[4];
string dir=ar[0];
char* p=(char*)dir.data();
string model_file = ar[1];
string trained_file = ar[2];
string mean_file = ar[3];
string label_file = ar[4];
Classifier classifier(model_file, trained_file, mean_file, label_file);
// string file = argv[5];
int depth=1;
//遍历获取文件名、总数了
trave_dir(p,depth);
for(int j=0;j<len;j++){
//char转化为string
string filename_str=filename[j];
//判断是不是jpg图片
int len1=filename_str.length();
string argv2;
for(int i=3;i>=0;i--){
argv2.push_back(filename_str[len1-i-1]);
}
if(argv2!=".jpg"){
std::cout<<filename[j]<<"不是jpg图片~~~~~"<<std::endl;
continue;
}
string file=dir+"//"+filename[j];
std::cout << "---------- Prediction for "
<< filename[j] << " ----------" << std::endl;
cv::Mat img = cv::imread(file, -1);
CHECK(!img.empty()) << "Unable to decode image " << file;
std::vector<Prediction> predictions = classifier.Classify(img);
/* Print the top N predictions. */
for (size_t i = 0; i < predictions.size(); ++i) {
Prediction p = predictions[i];
std::cout << std::fixed << std::setprecision(4) << p.second << " - \""
<< p.first << "\"" << std::endl;
}
}
}
#else
int main(int argc, char** argv) {
LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV.";
}
#endif // USE_OPENCV