智能设计新浪潮:多学科仿真与MBSE的融合之道
在当今快速发展的技术领域,多学科仿真和基于模型的系统工程(MBSE)的集成应用正逐渐成为设计和开发复杂系统的关键技术手段。这种集成方法不仅提高了设计过程的效率,还确保了产品的可靠性和性能,对于航空航天、汽车制造、能源科技等多个领域来说,它的重要性日益凸显。
本文将探讨多学科仿真和MBSE的基本概念、工作流程以及集成应用。无论您是对这些技术感兴趣的专业人士,还是好奇这些前沿技术如何影响我们日常生活的普通读者,本文都将为您提供有价值的信息和独到的见解。
一、多学科仿真技术
多学科仿真技术是一种集成了不同学科领域知识和技术的仿真方法,它能够模拟和分析系统在多个学科影响下的行为和性能,在航空、航天、汽车、能源和制造业等多个领域都有广泛的应用。仿真技术的发展已经从单一物理场仿真发展为多物理场耦合仿真和仿真驱动产品研发的阶段,正在向全生命周期仿真发展。
在产品的仿真过程中,仿真流程和仿真工具存在着紧密的关联和支撑关系,仿真模型和数据在工具和流程之间进行传递,有效的仿真流程管理、工具集成和数据管理是实现高效、准确仿真的关键。
随着数字化技术的深入应用和数字化研发平台的建设,产品设计仿真流程、技术、知识的应用逐渐向标准化、显性化、模块化、集成化、自动化、智能化的方向发展。
图1 流程-工具-数据集成化应用
二、多学科集成仿真与优化
多学科仿真是产品优化设计和智能设计的重要手段。通过构建多学科集成仿真与优化框架,集成设计方法、仿真流程、工具软件、模型数据等要素,建立不同学科仿真模型的映射关系,实现联合仿真与数据协同,支撑产品优化设计。
图2 集成仿真与优化相关技术
(1)软件集成适配技术
不同的仿真软件在建模方法、开发语言、集成接口及二次开发技术上存在显著差异。软件集成适配技术是数字化研发中实现设计仿真流程集成化、自动化,设计仿真知识模块化的重要手段。因此,可采用中立、开放且可扩展的仿真集成框架,构建各类CAD、CAE、自研软件和管理系统的集成组件。通过软件集成组件,实现多学科、多专业、多形态的工具软件和仿真算法的集成与封装,进而在仿真过程中实现对仿真软件的调用、驱动以及信息交互。
图3 工业软件组件化集成与适配
(2)异构模型集成
在多学科协同设计与联合仿真中,需要通过异构模型集成实现模型间的数据映射、数据转换或信息交互。实现异构模型集成的技术路径主要包括工具软件间的接口集成、基于FMI(Functional Mock-up Interface)接口标准的模型集成、基于模型总线的分布式仿真集成等。
(3)过程集成与自动化
通过多学科设计仿真流程的集成与管理,可实现自动化仿真与优化设计。通过调用软件集成组件搭建仿真流程,建立组件之间的数据关联关系,在流程驱动下实现自动化仿真,以满足特定场景的设计仿真需要。
图4 集成化的仿真流程
(4)知识封装
采用知识封装技术,将设计仿真过程中工程师使用各类建模仿真软件完成特定工作的过程、方法、经验、资源数据等知识元素统一封装为知识组件,用于系统快速设计和方案评估。通过搭积木的方式将多个知识组件组合应用,解决复杂性、集成性更高的业务问题。随着知识组件的不断积累和沉淀,企业可构建以知识组件为载体的研发工具体系,实现设计仿真知识共享和重用。
图5 知识封装与知识组件应用
(5)代理模型建立
大多数工程设计问题,需要通过大量仿真试验和物理试验对设计方案进行评估。以机翼气动外形设计为例,为确定最优方案,需要对不同的外形方案进行大量工况的仿真,以评估其气动性能和流场特性。采用高精度仿真模型往往需要耗时数小时至数天,导致多方案仿真的成本显著增加。
代理模型,作为一种数据驱动的建模方法,能够模拟高精度仿真模型,同时显著减少仿真时间和资源消耗。通过构建代理建模框架,集成不同的试验设计方法、模型降阶和验证算法,采集高精度仿真数据或试验数据,实现代理模型的有效建立和应用。
图6 代理模型建模
(6)多学科优化设计
多学科优化与仿真相辅相成,仿真提供了评估工具,而多学科优化则为仿真设定了目标,两者共同推动复杂系统设计性能的提高。
在设计仿真软件集成、仿真过程集成,以及代理建模等相关技术基础上,结合不同类型的优化算法和优化策略,构建多学科优化框架。针对不同类型的仿真场景和优化设计需求,可自定义优化问题和流程,实现专业级优化、系统级多学科优化、基于代理模型的智能优化等应用。
图7 多学科优化设计方法
(7)分布式执行
对于仿真求解资源消耗巨大,仿真时间较长的仿真过程可以采用分布式并行执行方式,通过调用云端的分布式计算资源或高性能计算资源完成仿真,无需在本地安装仿真工具和运行环境。在执行过程中按需分配资源,自动上传模型,通过作业管理器监控和管理仿真流程和作业状态,并可对仿真数据进行有效管理。
图8 分布式并行执行架构
(8)仿真数据可视化
多学科集成仿真与优化是持续迭代的过程,需要对大量的仿真模型、数据和优化过程进行管理和分析。通过仿真结果的轻量化处理及在线预览,实现多学科仿真数据的集中管理和高效共享。通过仿真优化过程的可视化监控和数据分析,帮助用户直观了解优化进程和结果,深入了解设计空间,探索设计变量敏感性,开展相关性分析和权衡分析。
图9 仿真模型和优化数据可视化
三、多学科仿真与MBSE
多学科仿真是MBSE实践和数字工程中的重要组成部分,不仅有助于在系统设计的早期阶段进行功能和性能验证,还可以支持系统架构的设计和优化,进而支持全生命周期数字主线的构建。
将系统建模环境与一系列的性能仿真验证工具(如FEM、CFD、代理模型等)关联,对系统模型与不同学科模型进行集成,可为系统的分析、优化提供强大的工具支撑,在实现系统方案权衡和需求追溯的同时,还可以加速系统模型与学科模型之间的转化效率,有利于设计师更好地理解复杂系统的行为,做出更加合理的设计决策。
图10 系统模型与学科模型集成实现系统方案权衡
数字主线是实现数字工程的重要手段,通过连接产品全生命周期中的模型和数据,支持端到端的信息集成与流通,模型互操作和设计协同。数字主线通过深度集成系统模型以及不同学科的仿真模型,利用STEP、REST/HTTP、OSLC 等开放标准,将源自各种软件、工具、系统的模型和数据进行综合,实现数据的连续和技术状态管理。
图11 数字主线平台保证产品数据连续
四、结语
随着基于模型的系统工程(MBSE)方法的深入应用,多学科仿真技术将继续发展。MBSE通过将系统模型开发与验证工具、多学科仿真模型开发与分析工具持续整合,形成系统模型与学科模型之间的数据映射和转换规范。这种方法不仅提高了系统设计的效率,还增强了设计的精确性,为航空航天、能源系统、汽车工程等多个领域提供了强有力的系统设计解决方案。
未来,杭州华望系统科技将深耕MBSE和数字化转型领域,致力于MBSE和多学科仿真技术的整合与创新。通过精细化流程管理和先进方法论的运用,进一步提高系统设计的品质与效能,推动工业软件的技术进步和创新发展。
-END-
*特别鸣谢所有内容创作者为本文所做出的技术分享以及创意贡献
*本文为原创,最终解释权归杭州华望系统科技所有。未经授权,严禁复制或转载。