一个整数n的阶乘可以写成n!,它表示从1到n这n个整数的乘积。阶乘的增长速度非常快,例如,13!就已经比较大了,已经无法存放在一个整型变量中;而35!就更大了,它已经无法存放在一个浮点型变量中。因此,当n比较大时,去计算n!是非常困难的。幸运的是,在本题中,我们的任务不是去计算n!,而是去计算n!最右边的那个非0的数字是多少。例如,5!=1*2*3*4*5=120,因此5!最右边的那个非0的数字是2。再如,7!=5040,因此7!最右边的那个非0的数字是4。再如,15!= 1307674368000,因此15!最右边的那个非0的数字是8。请编写一个程序,输入一个整数n(0<n<=100),然后输出n!最右边的那个非0的数字是多少。
输入:
7
输出:
4
import java.math.BigInteger;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
sc.close();
BigInteger r=new BigInteger("1");
for(int i=1;i<=n;i++) {
r=r.multiply(new BigInteger(String.valueOf(i)));
}
//此BigInteger转换为int。这种转换是类似于从一个long缩小原语转换为int。 如果此BigInteger是太大,不适合在一个int,只有低32位被返回。
//所以不能使用intvalue把BigInteger转为int
char chs[]=String.valueOf(r).toCharArray();
for(int i=chs.length-1;i>=0;i--) {
if(chs[i]!='0') {
System.out.println(chs[i]);
break;
}
}
}
}