蓝桥杯 P0505
题目:
资源限制
时间限制:1.0s 内存限制:256.0MB
一个整数n的阶乘可以写成n!,它表示从1到n这n个整数的乘积。阶乘的增长速度非常快,例如,13!就已经比较大了,已经无法存放在一个整型变量中;而35!就更大了,它已经无法存放在一个浮点型变量中。因此,当n比较大时,去计算n!是非常困难的。幸运的是,在本题中,我们的任务不是去计算n!,而是去计算n!最右边的那个非0的数字是多少。例如,5!=12345=120,因此5!最右边的那个非0的数字是2。再如,7!=5040,因此7!最右边的那个非0的数字是4。再如,15!= 1307674368000,因此15!最右边的那个非0的数字是8。请编写一个程序,输入一个整数n(0<n<=100),然后输出n!最右边的那个非0的数字是多少。
输入:
7
输出:
4
这道题可以用BigInteger暴力求解,但是目的是为了训练算法,所以应该思考另一种解决方案。像这种题一般都是有规律求解的,找到其中的规律,便可解决问题。为了发现其中的规律,一般常用的方法是先枚举出特殊的例子,再寻找一般规律。
而该题为了找到最右边第一个非0的数字,我们发现阶乘结果前面的数字我们不需要考虑,取出前一阶乘的末尾几个不为0的数字再乘以阶乘数,便可得到末尾非0数字。
但一开始我只取用最后一位非0数字,导致结果不完全正确,故我改为选取最后三位不为0的数字。
代码如下:
import java.util.Scanner;
public class Main {
static int MOD=1000000007;
public static void main(String[] args) {
Scanner input=new Scanner(System.in);
int n=input.nextInt();
int alternative=1;
int store=1;
for(int i=1;i<=n;i++) {
store=i*alternative;
while(store%10==0) {
store=store/10;
}
alternative=store%1000; /*选取后三位非0数字*/
}
System.out.println(alternative%10);
}
}