感谢1904007班全体同学在本篇笔记完成的过程中给予博主的鼓励和支持!
文章目录
- 一、集合及其运算
- 二、映射
- 三、关系
- 四、无穷集合及其基数
- 六、图的基本概念
- 七、树及割集
- 八、连通度与匹配
- 九、平面图与图的着色
一、集合及其运算
1.1 集合概念
集合有两种表示法,且集合与元素不同, x , { x } x,\{x\} x,{x}不同,且集合中顺序无关。
- 把所有元素列出来,中间用","间隔,两遍加上大括号。如果元素很多,且符合一定常识,可以用 " ⋯ " "\cdots" "⋯"来替代一部分。
- { x ∣ f ( x ) } \{x|f(x)\} {x∣f(x)},先把元素的表示形式列出来,然后以竖线间隔列出其性质。表示满足 f ( x ) f(x) f(x)性质的所有 x x x
1.2 子集、集合相等
定义1.2.1 集合的包含.
两个集合
A
,
B
A,B
A,B,若
A
A
A的每个元素都是
B
B
B中的元素,则称
A
A
A是
B
B
B的子集合,简称子集,记作
A
⊆
B
A\subseteq B
A⊆B。称
A
A
A包含在
B
B
B中,或
B
B
B包含着
A
A
A。
A
⊆
B
⟺
∀
x
∈
A
,
x
∈
B
\begin{aligned} A \subseteq B \Longleftrightarrow \forall x \in A,x\in B \end{aligned}
A⊆B⟺∀x∈A,x∈B
性质:
- A ⊆ A A \subseteq A A⊆A
- 若 A ⊆ B 且 B ⊆ C , 则 A ⊆ C {\text{若}}A\subseteq B {\text{且}}B\subseteq C,{\text{则}}A\subseteq C 若A⊆B且B⊆C,则A⊆C
定义1.2.2 集合的真子集.
设 A , B A,B A,B是两个集合,且 A ⊆ B A\subseteq B A⊆B, ∃ x ∈ B , x ∉ A \exists x \in B,x \notin A ∃x∈B,x∈/A,则称 A A A为 B B B的真子集,记作 A ⊂ B A\subset B A⊂B
定义1.2.3 集合的相等.
设 A , B A,B A,B是两个集合,且 A ⊆ B , B ⊆ A A\subseteq B,B\subseteq A A⊆B,B⊆A,则称 A A A与 B B B相等,记作 A = B A = B A=B
定理1.2.1 空集
空集是任一集的子集,且空集是唯一的。[其中空集唯一的证明方法为反证法,且利用了定义1.2.3的相等的概念]
定义1.2.4 集族.
以集合为元素的集合称为集族.例如 { N , R , Q } \{N,R,Q\} {N,R,Q}
定义1.2.5 幂集.
集合 S S S所有子集(包含空集与自身)所构成的集族称为S的幂集,记作 2 S 2^S 2S,且有 2 S = { A ∣ A ⊆ S } 2^S = \{A|A\subseteq S\} 2S={A∣A⊆S}.
1.3 集合的基本运算
定义1.3.1 并集
设 A , B A,B A,B是两个集合,至少属于这两个集合之一的元素构成的集合称为 A A A与 B B B的并集,记作 A ∪ B A\cup B A∪B.公式化表述为 A ∪ B = { x ∣ x ∈ A 或 x ∈ B } A\cup B = \{x | x \in A 或 x \in B\} A∪B={x∣x∈A或x∈B}.
定理1.3.1 并运算性质
设 A , B , C A,B,C A,B,C为任意三个集合,则对于交运算,满足以下几个规律:
- 交换律, A ∪ B = B ∪ A A \cup B = B \cup A A∪B=B∪A
- 结合律, A ∪ ( B ∪ C ) = ( A ∪ B ) ∪ C A\cup (B \cup C) = (A \cup B) \cup C A∪(B∪C)=(A∪B)∪C
- 幂等律, A ∪ A = A A \cup A = A A∪A=A
- ∅ ∪ A = A \emptyset \cup A = A ∅∪A=A
- A ∪ B = B ⟺ A ⊆ B A \cup B = B \Longleftrightarrow A \subseteq B A∪B=B⟺A⊆B
定义1.3.2 交集.
设 A , B A,B A,B是两个集合,由既属于 A A A又属于 B B B的一切元素构成的集合称为 A A A与 B B B的交集,记作 A ∩ B A\cap B A∩B.公式化表示为 A ∩ B = { x ∣ x ∈ A 且 x ∈ B } A\cap B = \{x | x\in A 且 x\in B\} A∩B={x∣x∈A且x∈B}.
定理1.3.2 交运算性质
设 A , B , C A,B,C A,B,C是三个任意集合,则
- 交换律, A ∩ B = B ∩ A A \cap B = B \cap A A∩B=B∩A
- 结合律, A ∩ ( B ∩ C ) = ( A ∩ B ) ∩ C A\cap (B \cap C) = (A \cap B) \cap C A∩(B∩C)=(A∩B)∩C
- 幂等律, A ∩ A = A A \cap A = A A∩A=A
- ∅ ∩ A = ∅ \emptyset \cap A = \emptyset ∅∩A=∅
- A ∩ B = A ⟺ A ⊆ B A \cap B = A \Longleftrightarrow A \subseteq B A∩B=A⟺A⊆B
定理1.3.3 交并运算性质-结合律
设
A
A
A为任一集合,
{
B
l
∣
l
∈
I
}
\{B_l | l \in I\}
{Bl∣l∈I}为任一集族,则有
A
∩
(
∪
l
∈
I
B
l
)
=
∪
l
∈
I
(
A
∩
B
l
)
A
∪
(
∩
l
∈
I
B
l
)
=
∩
l
∈
I
(
A
∪
B
l
)
A\cap (\cup_{l \in I} B_l) = \cup_{l \in I}(A \cap B_l)\\ A \cup (\cap_{l \in I} B_l) = \cap_{l\in I}(A \cup B_l)
A∩(∪l∈IBl)=∪l∈I(A∩Bl)A∪(∩l∈IBl)=∩l∈I(A∪Bl)
定理1.3.4 交并运算性质-分配律
设 A , B , C A,B,C A,B,C为任意三个集合,则
- 交运算对并运算满足分配律, A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) A\cap(B\cup C) = (A\cap B) \cup (A\cap C) A∩(B∪C)=(A∩B)∪(A∩C).
- 并运算对交运算满足分配律, A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) A\cup(B\cap C) = (A\cup B) \cap (A \cup C) A∪(B∩C)=(A∪B)∩(A∪C).
定理1.3.5 交并运算性质3-吸收律
对于两个集合 A , B A,B A,B,满足吸收律:
- 满足吸收律, A ∩ ( A ∪ B ) = A A\cap (A\cup B) = A A∩(A∪B)=A
- 还是满足吸收律, A ∪ ( A ∩ B ) = A A\cup(A\cap B) = A A∪(A∩B)=A.
定义1.3.3 两两不相交的集序列.
设 A , B A,B A,B为任意集合,如果 A ∩ B = ∅ A\cap B = \emptyset A∩B=∅,则称 A A A与 B B B不相交.若集序列 A 1 , A 2 , ⋯ , A n , ⋯ A_1,A_2,\cdots,A_n,\cdots A1,A2,⋯,An,⋯的任意两集 A i A_i Ai与 A j A_j Aj均不相交,则称 A 1 , A 2 , ⋯ , A n , ⋯ A_1,A_2,\cdots,A_n,\cdots A1,A2,⋯,An,⋯是两两不相交的集序列.
定义1.3.4 差集.
设 A , B A,B A,B是两个任意的集合,由属于 A A A但不属于 B B B的一切元素构成的集合称为 A A A与 B B B的差集,并记作 A ∖ B A\setminus B A∖B.公式化表示为 A ∖ B = { x ∣ x ∈ A 且 x ∉ B } A \setminus B = \{x | x\in A 且 x \notin B\} A∖B={x∣x∈A且x∈/B}.
定理1.3.6 交对差的分配律
设 A , B , C A,B,C A,B,C为三个任意集合,交运算对差运算满足分配律,即 A ∩ ( B ∖ C ) = ( A ∩ B ) ∖ ( A ∩ C ) A \cap (B \setminus C) = (A\cap B) \setminus (A\cap C) A∩(B∖C)=(A∩B)∖(A∩C).
定理1.3.7 差判定子集
设 A , B A,B A,B为两个集合,则 ( A ∖ B ) ∪ B = A ⟺ B ⊆ A (A \setminus B) \cup B = A \Longleftrightarrow B \subseteq A (A∖B)∪B=A⟺B⊆A.
定义1.3.5 对称差.
设 A , B A,B A,B为两个集合, A ∖ B , B ∖ A A\setminus B,B\setminus A A∖B,B∖A的并集称为 A , B A,B A,B的对称差,记作 A Δ B A\Delta B AΔB.公式化表示为 A Δ B = { x ∣ x ∈ A 或 x ∈ B 但 x ∉ A ∩ B } = { x ∣ x ∈ A ∪ B 但 x ∉ A ∩ B } = ( A ∪ B ) ∖ ( A ∩ B ) A\Delta B = \{x | x\in A 或 x\in B 但 x \notin A\cap B\} = \{x|x\in A \cup B 但 x\notin A\cap B\} = (A\cup B) \setminus (A\cap B) AΔB={x∣x∈A或x∈B但x∈/A∩B}={x∣x∈A∪B但x∈/A∩B}=(A∪B)∖(A∩B)
定理1.3.8 对称差性质
设 A , B , C A,B,C A,B,C为任意三个集合,则
- 交换律, A Δ B = B Δ A A\Delta B = B \Delta A AΔB=BΔA
- 结合律, A Δ ( B Δ C ) = ( A Δ B ) Δ C A\Delta (B\Delta C) = (A\Delta B) \Delta C AΔ(BΔC)=(AΔB)ΔC
- A Δ A = ∅ A\Delta A = \emptyset AΔA=∅
- A Δ ∅ = A A\Delta \emptyset = A AΔ∅=A
- 交运算关于对称差满足分配律,即 A ∩ ( B Δ C ) = ( A ∩ B ) Δ ( A ∩ C ) A\cap (B\Delta C) = (A\cap B) \Delta (A\cap C) A∩(BΔC)=(A∩B)Δ(A∩C).
1.4 余集,De Morgan公式
定义1.4.1 余集.
设 S S S是一个集合, A ⊆ S A\subseteq S A⊆S,差集 S ∖ A S\setminus A S∖A称为集 A A A对集 S S S的余集,记作 A c A^c Ac,即 A c = S ∖ A A^c = S\setminus A Ac=S∖A.如果容易发生误解,则写成 C S A C_S A CSA,表示的意义与上述相同.
性质: 设 A ⊆ S A\subseteq S A⊆S,则有下述结论.
- S S S对 S S S的余集为空集. C S S = ∅ C_S S = \emptyset CSS=∅.
- C S ∅ = S , ∅ c = S C_S \emptyset = S,\empty^c = S CS∅=S,∅c=S
- A ∩ A c = ∅ , A ∩ C S A = ∅ A\cap A^c = \emptyset,A \cap C_S A = \emptyset A∩Ac=∅,A∩CSA=∅
- A ∪ A c = S , A ∪ C S A = S A\cup A^c = S,A \cup C_S A = S A∪Ac=S,A∪CSA=S
定理1.4.1 并集的余集
并集的余集等于各余集的交集.即 ( ∪ δ ∈ I A δ ) c = ∩ δ ∈ I A δ c (\cup_{\delta \in I}A_\delta)^c = \cap_{\delta \in I}A_\delta^c (∪δ∈IAδ)c=∩δ∈IAδc.
定理1.4.2 交集的余集
交集的余集等于各余集的并集.即 ( ∩ δ ∈ I A δ ) c = ∪ δ ∈ I A δ c (\cap_{\delta \in I}A_\delta)^c = \cup_{\delta \in I}A_\delta^c (∩δ∈IAδ)c=∪δ∈IAδc.
上述两个定理可以缩小范围到两个集合.于是有
- ( A ∪ B ) c = A c ∩ B c (A\cup B)^c = A^c \cap B^c (A∪B)c=Ac∩Bc
- ( A ∩ B ) c = A c ∪ B c (A\cap B)^c = A^c \cup B^c (A∩B)c=Ac∪Bc
定理1.4.3 余集与差,对称差
设 A , B A,B A,B为 S S S的子集.则
- A ∖ B = A ∩ B c A\setminus B = A\cap B^c A∖B=A∩Bc
- A Δ B = ( A ∩ B c ) ∪ ( A c ∩ B ) A\Delta B = (A\cap B^c)\cup (A^c \cap B) AΔB=(A∩Bc)∪(Ac∩B)
- A c = S Δ A A^c = S\Delta A Ac=SΔA
1.5 笛卡尔乘积
定义1.5.1 笛卡尔乘积
设 A A A与 B B B为任意两个集合,则称集合 { ( a , b ) ∣ a ∈ A , b ∈ B } \{(a,b) | a\in A,b\in B\} {(a,b)∣a∈A,b∈B}为 A A A与 B B B的笛卡尔成绩,记作 A × B A\times B A×B.
定理1.5.1 笛卡尔乘积与集合运算
设 A , B , C A,B,C A,B,C为任意三个集合,则笛卡尔乘积对并,交,差运算分别满足分配律,即
- A × ( B ∪ C ) = ( A × C ) ∪ ( A × C ) A\times (B\cup C) = (A\times C) \cup (A\times C) A×(B∪C)=(A×C)∪(A×C)
- A × ( B ∩ C ) = ( A × C ) ∩ ( A × C ) A\times (B\cap C) = (A\times C) \cap (A\times C) A×(B∩C)=(A×C)∩(A×C)
- A × ( B ∖ C ) = ( A × C ) ∖ ( A × C ) A\times (B\setminus C) = (A\times C) \setminus (A\times C) A×(B∖C)=(A×C)∖(A×C)
定义1.5.2 笛卡尔乘积拓展
设 A 1 , A 2 , A 3 , A 4 , . . . , A n A_1,A_2,A_3,A_4,...,A_n A1,A2,A3,A4,...,An为n个集合,则 { ( a 1 , a 2 , a 3 , . . . , a n ) ∣ a i ∈ A i } \{(a_1,a_2,a_3,...,a_n)|a_i \in A_i\} {(a1,a2,a3,...,an)∣ai∈Ai}称为 A 1 , A 2 , A 3 , . . . A n A_1,A_2,A_3,...A_n A1,A2,A3,...An的笛卡尔乘积,记作 A 1 × A 2 × A 3 × . . . × A n A_1\times A_2 \times A_3\times ...\times A_n A1×A2×A3×...×An或 ∏ i = 1 n A i \prod_{i=1}^nA_i ∏i=1nAi.
1.6 有穷集合的基数
定义1.6.1 一一对应.
设 A A A和 B B B是两个集合,如果有一个法则 ϕ \phi ϕ使 ∀ x ∈ A \forall x \in A ∀x∈A根据法则 ϕ \phi ϕ在 B B B中有唯一的一个y与x对应,这个y常常被记作 ϕ ( x ) \phi(x) ϕ(x),而且 ∀ y ∈ B \forall y \in B ∀y∈B在 A A A中也有唯一的 x x x使在 ϕ \phi ϕ下对应 y y y.这个法则 ϕ \phi ϕ称为从 A A A到 B B B的一个一一对应.(一对一配对无余的方法).
定义1.6.1’ 一一对应
一个从集合 A A A到集合 B B B的一一对应是 A × B A\times B A×B的子集 ϕ \phi ϕ使之满足:
- ∀ x ∈ A , ∃ y ∈ B ⇒ ( x , y ) ∈ ϕ . ( x , y ) , ( x , z ) ∈ ϕ ⇒ y = z \forall x \in A,\exists y\in B\Rightarrow (x,y)\in \phi.\\ (x,y),(x,z) \in \phi\Rightarrow y=z ∀x∈A,∃y∈B⇒(x,y)∈ϕ.(x,y),(x,z)∈ϕ⇒y=z
- ∀ y ∈ B , ∃ x ∈ A ⇒ ( x , y ) ∈ ϕ , ( x , y ) , ( x ′ , y ) ∈ ϕ ⇒ x = x ′ \forall y\in B,\exists x\in A\Rightarrow (x,y)\in \phi,\\(x,y),(x',y)\in \phi\Rightarrow x = x' ∀y∈B,∃x∈A⇒(x,y)∈ϕ,(x,y),(x′,y)∈ϕ⇒x=x′
如果 ( x , y ) ∈ ϕ (x,y)\in \phi (x,y)∈ϕ,则把 y y y记作 ϕ ( x ) \phi(x) ϕ(x),即 y = ϕ ( x ) y=\phi(x) y=ϕ(x).
定义1.6.2 有限集
集合 A A A称为有限集,如果
- A = ∅ A = \emptyset A=∅.特殊定义基数为 0 0 0.
- A ≠ ∅ A \neq \emptyset A=∅且存在一个自然数 n n n,使得 A A A与 { 1 , 2 , 3 , … , n } \{1,2,3,\dots,n\} {1,2,3,…,n}间存在一个一一对应,数 n n n称为 A A A的基数,记成 ∣ A ∣ |A| ∣A∣.
如果 A A A不是有穷集,则称 A A A为无穷集.
定理1.6.1 加法法则.
设 A , B A,B A,B为两个不相交的有限集,则 ∣ A ∪ B ∣ = ∣ A ∣ + ∣ B ∣ |A\cup B| = |A|+|B| ∣A∪B∣=∣A∣+∣B∣.
定理1.6.2 有限可数多加法
设 A i , i ∈ { 1 , 2 , … , n } A_i,i\in \{1,2,\dots,n\} Ai,i∈{1,2,…,n}为n个两两不相交的有限集,则 ∣ ∪ i = 1 n A i ∣ = ∑ i = 1 n ∣ A i ∣ |\cup_{i=1}^n A_i| = \sum_{i=1}^{n} |A_i| ∣∪i=1nAi∣=∑i=1n∣Ai∣.
定理1.6.3 乘积法则.
设 A , B A,B A,B为有穷集,则 ∣ A × B ∣ = ∣ A ∣ ⋅ ∣ B ∣ |A\times B| = |A| \cdot |B| ∣A×B∣=∣A∣⋅∣B∣.
定理1.6.4 有限可数多乘法
设 B i , i ∈ N , i ≤ n B_i,i\in N,i\leq n Bi,i∈N,i≤n,为n个有限集,则 ∣ ∏ B i ∣ = ∏ ∣ B i ∣ |\prod B_i| = \prod |B_i| ∣∏Bi∣=∏∣Bi∣.
定理1.6.5 减法法则或淘汰原理
设 S S S为有限集, A ⊂ S A \subset S A⊂S,则 ∣ A c ∣ = ∣ S ∣ − ∣ A ∣ |A^c| = |S| - |A| ∣Ac∣=∣S∣−∣A∣.
定理1.6.6 并运算
设 A , B A,B A,B为有限集,则 ∣ A ∪ B ∣ = ∣ A ∣ + ∣ B ∣ − ∣ A ∩ B ∣ |A\cup B|= |A| +|B| - |A\cap B| ∣A∪B∣=∣A∣+∣B∣−∣A∩B∣
定理1.6.7 对称差运算
设 A , B A,B A,B为有限集,则 ∣ A Δ B ∣ = ∣ A ∣ + ∣ B ∣ − 2 ∣ A ∩ B ∣ |A\Delta B| = |A| + |B| - 2|A\cap B| ∣AΔB∣=∣A∣+∣B∣−2∣A∩B∣
定理1.6.8 逐步淘汰原理形式之一
设 A i , i ∈ N , i ≤ n A_i,i\in N,i \leq n Ai,i∈N,i≤n为n个有穷集,则 ∣ ∪ A i ∣ = ∑ ∣ A i ∣ − ∑ ∣ A i ∩ A j ∣ + ∑ ∣ A i ∩ A j ∩ A k ∣ ⋯ , i ≠ j ≠ k , i , j , k ∈ { 1 , 2 , … , n } |\cup A_i| = \sum|A_i| - \sum|A_i \cap A_j| + \sum|A_i \cap A_j \cap A_k|\cdots,i \neq j \neq k,i,j,k \in \{1,2,\dots,n\} ∣∪Ai∣=∑∣Ai∣−∑∣Ai∩Aj∣+∑∣Ai∩Aj∩Ak∣⋯,i=j=k,i,j,k∈{1,2,…,n}.
定理1.6.9 逐步淘汰原理形式之二
假设同上, ∣ ∩ A i c ∣ = ∣ S ∣ − ∣ ∪ A i ∣ |\cap A_i^c| = |S| - |\cup A_i| ∣∩Aic∣=∣S∣−∣∪Ai∣然后展开即可.
二、映射
2.1 函数的一般概念-映射
定义2.1.1 映射
设 X X X与 Y Y Y是两个非空集合,一个从 X X X到 Y Y Y的映射 f f f是一个法则,根据 f f f,对 X X X中每个元素 x x x都有 Y Y Y中唯一确定的元素 y y y与之对应. f f f给 x x x规定的元素 y y y称为 x x x在 f f f下的象,而 x x x称为 y y y在 f f f下的原象. X X X称为 f f f的定义域.
" f f f是 X X X到 Y Y Y的映射"常记为 f : X → Y f:X\rightarrow Y f:X→Y.
x x x在 f f f下的象 y y y常记作 f ( x ) f(x) f(x).集合 { f ( x ) ∣ x ∈ X } \{f(x)|x\in X\} {f(x)∣x∈X}称为 f f f的值域或象,记作 I m ( f ) I_m(f) Im(f).
定义2.1.2 映射与笛卡尔乘积
设 X X X与 Y Y Y是两个非空集合,一个从 X X X到 Y Y Y的映射是一个满足以下两个条件的 X × Y X\times Y X×Y的子集 f f f:
- 对于 X X X的每一个元素 x x x,存在一个 y ∈ Y y\in Y y∈Y使得 ( x , y ) ∈ f (x,y) \in f (x,y)∈f.
- 若 ( x , y ) , ( x , y ′ ) ∈ f (x,y),(x,y')\in f (x,y),(x,y′)∈f则 y = y ′ y = y' y=y′.单值性.
定义2.1.3 限制与扩张
设 f : X → Y , A ⊆ X f:X\rightarrow Y,A \subseteq X f:X→Y,A⊆X,当把 f f f的定义域限制在 A A A上时,就得到了一个 ϕ : A → Y , ∀ x ∈ A , ϕ ( x ) = f ( x ) \phi:A \rightarrow Y,\forall x \in A,\phi(x) = f(x) ϕ:A→Y,∀x∈A,ϕ(x)=f(x), ϕ \phi ϕ被称为 f f f在 A A A上的限制,并且场营 f ∣ A f|A f∣A来代替 ϕ \phi ϕ.反过来,我们说 f f f时 ϕ \phi ϕ在 X X X上的扩张
定义2.1.4 部分映射
设 f : A → Y , A ⊆ X f:A\rightarrow Y,A\subseteq X f:A→Y,A⊆X则称 f f f是 X X X上的一个部分映射.在这里,我们假设空集到 Y Y Y有一个唯一的映射,它也是 X X X到 Y Y Y的部分映射.
定义2.1.5 映射相等
两个映射 f f f和 g g g被称为是相等的当且仅当 f f f和 g g g都是 X X X到 Y Y Y的映射,且 ∀ x ∈ X \forall x \in X ∀x∈X,恒有 f ( x ) = g ( x ) f(x) = g(x) f(x)=g(x).
定义2.1.6 单射
设 f : X → Y f:X\rightarrow Y f:X→Y,如果 ∀ x , x ′ ∈ X \forall x,x'\in X ∀x,x′∈X,只要 x ≠ x ′ x\neq x' x=x′,就有 f ( x ) ≠ f ( x ′ ) f(x) \neq f(x') f(x)=f(x′),则称 f f f为从 X X X到 Y Y Y的单射.
定义2.1.7 满射
设 f : X → Y f:X\rightarrow Y f:X→Y,如果 ∀ y ∈ Y , ∃ x ∈ X , f ( x ) = y \forall y \in Y,\exists x \in X,f(x) = y ∀y∈Y,∃x∈X,f(x)=y,则称 f f f是 X X X到 Y Y Y上的满射.
定义2.1.8 一一对应
设 f : X → Y f:X\rightarrow Y f:X→Y,若 f f f既是单射又是满射,则 f f f被称为双射,或一一对应,也称作 X X X与 Y Y Y对等,记作 X ∼ Y X\sim Y X∼Y.
定义2.1.9 恒等映射
设 f : X → X f:X\rightarrow X f:X→X,如果 ∀ x ∈ X , f ( x ) = x \forall x \in X,f(x) = x ∀x∈X,f(x)=x,则称 f f f为 X X X上的恒等映射. X X X上的恒等映射常记为 I X I_X IX或 1 X 1_X 1X.
定理2.1.1 大小关系
设 A , B A,B A,B是有限集, f : A → B f:A\rightarrow B f:A→B.
- 若 f f f满射,则 ∣ A ∣ ≥ ∣ B ∣ |A|\geq |B| ∣A∣≥∣B∣.
- 若 f f f单射,则 ∣ A ∣ ≤ ∣ B ∣ |A|\leq |B| ∣A∣≤∣B∣.
定理2.1.2 关系
设 A , B A,B A,B是有限集, ∣ A ∣ = ∣ B ∣ |A|=|B| ∣A∣=∣B∣,则 f : A → B f:A\rightarrow B f:A→B是单射当且仅当 f f f是满射.
映射集
从
X
X
X到
Y
Y
Y的所有映射之集记作
Y
X
Y^X
YX,即
Y
X
=
{
f
∣
f
:
X
→
Y
}
Y^X = \{f|f:X\rightarrow Y\}
YX={f∣f:X→Y}
2.2 抽屉原理
抽屉原理
如果把n+1个物体放到n个盒子里面,则必有一个抽屉里至少放了两个物体.
抽屉原理强形式
设 q 1 , q 2 , … , q n q_1,q_2,\dots,q_n q1,q2,…,qn为n个正整数.如果把 ∑ q − n + 1 \sum q -n+1 ∑q−n+1个物体放到n个盒子里面,则必有一个盒子 i i i至少有 q i q_i qi个物品.
- 取所有 q = 2 q=2 q=2,就是抽屉原理普通形式
- 如果所有 q = r q=r q=r就是导出形式
抽屉定理的"相等导出形式"
若把 n ( r − 1 ) + 1 n(r-1) + 1 n(r−1)+1个物品放到 n n n个盒子里面,至少有一个盒子含有不少于 r r r个物品.
抽屉定理"反向形式"
如果把每个盒子里面放的东西记作 m i m_i mi,取 n ∗ q = n ∗ r n*q=n*r n∗q=n∗r.则由相等导出形式可得 : ∑ m > n ( r − 1 ) \sum m > n(r-1) ∑m>n(r−1)时,至少有一个 m i m_i mi大于等于r.
如果n个正整数 m i m_i mi,满足 ∑ m > n ( r − 1 ) \sum m > n(r-1) ∑m>n(r−1),则至少有一个 m i m_i mi不小于 r r r.
2.3 映射的一般性质
首先,我们在这里假设
f
−
1
f^{-1}
f−1为
f
f
f的一个导出映射(虽然它与逆映射是同一个符号),表示的含义是:
∀
x
0
∈
X
,
f
(
x
0
)
=
y
0
⇒
f
−
1
(
y
0
)
=
x
0
\forall x_0 \in X,f(x_0) = y_0\\ \Rightarrow f^{-1}(y_0) = x_0
∀x0∈X,f(x0)=y0⇒f−1(y0)=x0
定理2.3.1 性质1群
设 f : X → Y f:X\rightarrow Y f:X→Y, C ⊆ Y , D ⊆ Y C \subseteq Y,D\subseteq Y C⊆Y,D⊆Y,则
- f − 1 ( C ∪ D ) = f − 1 ( C ) ∪ f − 1 ( D ) f^{-1}(C\cup D) = f^{-1}(C) \cup f^{-1}(D) f−1(C∪D)=f−1(C)∪f−1(D)
- f − 1 ( C ∩ D ) = f − 1 ( C ) ∩ f − 1 ( D ) f^{-1}(C\cap D) = f^{-1}(C) \cap f^{-1}(D) f−1(C∩D)=f−1(C)∩f−1(D)
- f − 1 ( C Δ D ) = f − 1 ( C ) Δ f − 1 ( D ) f^{-1}(C \Delta D) = f^{-1}(C) \Delta f^{-1}(D) f−1(CΔD)=f−1(C)Δf−1(D)
- f − 1 ( D c ) = f − 1 ( C Y D ) = ( f − 1 ( D ) ) c f^{-1}(D^c) = f^{-1}(C_YD) = (f^{-1}(D))^c f−1(Dc)=f−1(CYD)=(f−1(D))c
定理2.3.2 性质2群
设 f : X → Y f:X\rightarrow Y f:X→Y, A ⊆ X , B ⊆ X A \subseteq X,B\subseteq X A⊆X,B⊆X,则
- f ( A ∪ B ) = f ( A ) ∪ f ( B ) f(A\cup B) = f(A) \cup f(B) f(A∪B)=f(A)∪f(B)
- f ( A ∩ B ) ⊆ f ( A ) ∩ f ( B ) f(A\cap B) \subseteq f(A) \cap f(B) f(A∩B)⊆f(A)∩f(B)
- f ( A Δ B ) ⊇ f ( A ) Δ f ( B ) f(A\Delta B) \supseteq f(A) \Delta f(B) f(AΔB)⊇f(A)Δf(B)
2.4 映射的合成
定义2.4.1 合成
设 f : X → Y , g : Y → Z f:X\rightarrow Y,g:Y\rightarrow Z f:X→Y,g:Y→Z,一个从 X X X到 Z Z Z的映射 h h h称为 f f f与 g g g的合成,如果 ∀ x ∈ X , h ( x ) = g ( f ( x ) ) \forall x \in X,h(x) = g(f(x)) ∀x∈X,h(x)=g(f(x))."映射f与g的合成"h记作 g ∘ f g\circ f g∘f,或者省一下 g f gf gf.
定理2.4.1 结合律
设
f
:
X
→
Y
,
g
:
Y
→
Z
,
h
:
Z
→
W
f:X\rightarrow Y,g:Y\rightarrow Z,h:Z\rightarrow W
f:X→Y,g:Y→Z,h:Z→W.以下式子成立:
h
∘
(
g
f
)
=
(
h
g
)
∘
f
h\circ (gf) = (hg)\circ f
h∘(gf)=(hg)∘f
定理2.4.2 恒等合成
设 f : X → Y f:X\rightarrow Y f:X→Y.则 f ∘ I X = I Y ∘ f f\circ I_X = I_Y \circ f f∘IX=IY∘f.
定理2.4.3 已知条件的合成
设 f : X → Y , g : Y → Z , h = g ∘ f f:X\rightarrow Y,g:Y\rightarrow Z,h = g \circ f f:X→Y,g:Y→Z,h=g∘f.则
- f , g f,g f,g单射,则 h h h单射
- f , g f,g f,g满射,则 h h h满射
- f , g f,g f,g双射,则 h h h双射
定理2.4.4 已知结论反推条件
设 f : X → Y , g : Y → Z , h = g ∘ f f:X\rightarrow Y,g:Y\rightarrow Z,h = g \circ f f:X→Y,g:Y→Z,h=g∘f.则
- 若 h h h单射,则 f f f一定是单射
- 若 h h h满射,则 g g g一定是满射
- 若 h h h是双射,则 f f f单射, g g g满射
定理2.4.5 X→ X包含关系
设 f , g f,g f,g都是 X → X X\rightarrow X X→X的映射,则 I m ( f ) ⊆ I m ( g ) I_m(f)\subseteq I_m(g) Im(f)⊆Im(g)的充要条件为 ∃ h : X → X \exists h:X\rightarrow X ∃h:X→X,满足 f = g ∘ h f = g\circ h f=g∘h.
2.5 逆映射
定义2.5.1 逆映射
设
f
:
X
→
Y
f:X\rightarrow Y
f:X→Y.如果存在一个
g
:
Y
→
X
g:Y\rightarrow X
g:Y→X使得
f
∘
g
=
I
Y
g
∘
f
=
I
X
f\circ g = I_Y\\ g\circ f = I_X
f∘g=IYg∘f=IX
则称映射
f
f
f是可逆的,而
g
g
g为
f
f
f的逆映射.
定义2.5.2 左右可逆
设 f : X → Y f:X\rightarrow Y f:X→Y,如果存在一个映射 g : Y → X g:Y\rightarrow X g:Y→X满足 g ∘ f = I X g\circ f = I_X g∘f=IX,则称 f f f是左可逆的, g g g为 f f f的左逆映射.
设 f : X → Y f:X\rightarrow Y f:X→Y,如果存在一个映射 g : Y → X g:Y\rightarrow X g:Y→X满足 f ∘ g = I Y f\circ g = I_Y f∘g=IY,则称 f f f是右可逆的, g g g为 f f f的右逆映射.
定理2.5.1 可逆充要条件
设 f : X → Y f:X\rightarrow Y f:X→Y,则 f f f是可逆的充分必要条件是 f f f为双射(一一对应).
定理2.5.2 逆映射唯一
设 f : X → Y f:X\rightarrow Y f:X→Y,则如果 f f f是可逆的,那么 f f f的逆映射是唯一的,且表示为 f − 1 f^{-1} f−1.
定理2.5.3 乘积可逆
设 f : X → Y , g : Y → Z f:X\rightarrow Y,g:Y\rightarrow Z f:X→Y,g:Y→Z都是可逆的,那么 g f gf gf也可逆,且 ( g f ) − 1 = f − 1 g − 1 (gf)^{-1} = f^{-1}g^{-1} (gf)−1=f−1g−1.
定理2.5.4 左右可逆充要条件
- 左可逆的充要条件是 f f f为单射
- 右可逆的充要条件是 f f f为满射
*2.6 置换
[前情提要]这个内容不是考试范围!
主要内容有以下几个部分
-
置换是一个排列, ∣ S ∣ |S| ∣S∣大小的叫 ∣ S ∣ |S| ∣S∣次置换.
-
置换在使用2*n的一个小方块表示的时候,可以换列位置.
-
置换的乘法可以用2所用的方法来快速计算
-
如果 a i a_i ai对应 a i + 1 a_{i+1} ai+1,然后构成了环,则称这个为 k k k-循环置换,其中 k k k是这个环的大小.2-循环置换又被称为对换.
-
r r r是一个 k k k-循环置换,则 r k = I r^k = I rk=I,且对于所有 1 ≤ n < k , r n ≠ I 1\leq n < k,r^n \neq I 1≤n<k,rn=I.
-
如果两个循环置换没有共同元素,则可以交换: α ∘ β = β ∘ α \alpha \circ \beta = \beta \circ \alpha α∘β=β∘α.
-
循环分解:每个置换能分解成若干无共同元素的循环置换乘积.且分解出的循环置换在不考虑顺序的情况下是唯一的.
-
每个置换都能分解若干对换的乘积.分解不唯一,但分解出来的个数的奇偶性唯一.(范德蒙行列式证明).偶数的时候叫偶置换,奇数的时候叫奇置换.
偶置换*奇置换 = 奇置换.偶置换*偶置换=偶置换.奇置换*奇置换=偶置换.
-
n次奇偶置换个数均为 n ! 2 n!\over 2 2n!.
*2.7 二元运算与多元运算
[前情提要]这个内容不是考试范围!
主要内容:
-
自然数集到X的映射称为X上的一个无穷序列.1-n集合到X的一个映射称为X上长为n的(有限)序列.
-
N N N到 N N N的映射,如果 i < j , s ( i ) < s ( j ) i < j ,s(i) < s(j) i<j,s(i)<s(j)则 s s s是N的一个子序列.如果 s ( i ) = n i s(i) = n_i s(i)=ni,那么这个子序列就记作 n 1 , n 2 , … . n i < n i + 1 n_1,n_2,\dots. n_i < n_{i+1} n1,n2,….ni<ni+1.
-
s s s是 N N N的子序列, a a a是X的一个序列,那么 a ∘ s a \circ s a∘s称为 a a a的一个子序列.
-
ϕ : X × Y → Z \phi : X \times Y \rightarrow Z ϕ:X×Y→Z,是一个X与Y到Z的二元(代数)运算. X = Y = Z X=Y=Z X=Y=Z称为X上的二元运算.
-
X X X到 Y Y Y的任一映射都是X到Y的一元运算. X = Y X=Y X=Y叫X上的一元运算,也叫变换
-
ϕ : A 1 × A 2 × ⋯ × A n → D \phi : A_1 \times A_2 \times \cdots \times A_n \rightarrow D ϕ:A1×A2×⋯×An→D称为 A 1 , A 2 , … , A n A_1,A_2,\dots,A_n A1,A2,…,An到 D D D的一个n元(代数)运算.如果都相等,则称在A上的n元运算.
-
结合律:二元运算 ∘ \circ ∘如果满足 a ∘ ( b ∘ c ) = ( a ∘ b ) ∘ c a\circ (b \circ c) = (a\circ b) \circ c a∘(b∘c)=(a∘b)∘c则称这个运算满足结合律.
-
A A A对 B B B满足左分配律: a B ( b A c ) = ( a B b ) A ( a B c ) a B (b A c) = (a B b) A (a B c) aB(bAc)=(aBb)A(aBc).右分配律同理
-
x ∘ e = e ∘ x = x x\circ e = e\circ x = x x∘e=e∘x=x,则e为 ∘ \circ ∘的单位元素. a ∘ b = b ∘ a = e a \circ b = b\circ a = e a∘b=b∘a=e,则a,b互为逆元素.
-
代数系的同构: ( S , + , − ) , ( T , < , > ) (S,+,-),(T,<,>) (S,+,−),(T,<,>)是两个代数系,那么存在一个一一对应 ϕ : S → T \phi : S \rightarrow T ϕ:S→T:
ϕ ( x + y ) = ϕ ( x ) < ϕ ( y ) ϕ ( x − y ) = ϕ ( x ) > ϕ ( y ) x , y ∈ S \phi(x+y) = \phi(x) < \phi(y)\\ \phi(x-y) = \phi(x) > \phi(y)\\ x,y \in S ϕ(x+y)=ϕ(x)<ϕ(y)ϕ(x−y)=ϕ(x)>ϕ(y)x,y∈S
那么就称这两个代数系同构.
2.8 集合的特征函数
定义2.8.1 特征函数
设
X
X
X是一个集合,
E
⊆
X
E\subseteq X
E⊆X.从
X
X
X到
{
0
,
1
}
\{0,1\}
{0,1}的一个如下映射称为
E
E
E的特征函数:
χ
E
=
{
1
,
if
x
∈
E
0
,
if
x
∉
E
\chi_E = \begin{cases} 1,{\text{if}\ x\in E}\\ 0,{\text{if}}\ x \notin E \end{cases}
χE={1,if x∈E0,if x∈/E
同时定义
C
h
(
X
)
=
{
χ
∣
χ
:
X
→
{
0
,
1
}
}
Ch(X) = \{\chi | \chi :X \rightarrow\{0,1\} \}
Ch(X)={χ∣χ:X→{0,1}}.也就是所有特征函数的集合.
定理2.8.1 幂集与特征函数集同构
( 2 X , ∪ , ∩ , c ) , ( C h ( X ) , ∨ , ∧ , c ) (2^X,\cup,\cap,^c),(Ch(X),\lor,\land,^c) (2X,∪,∩,c),(Ch(X),∨,∧,c)同构.可以由 χ \chi χ作为一一对应,然后进行证明.
三、关系
3.1 关系的概念
定义3.1.1 关系定义1
A , B A,B A,B两个集合,一个从 A × B A\times B A×B到01的映射 R R R称为从 A A A到B的一个二元关系,或AB间的二元关系.对任何 ( a , b ) ∈ A × B (a,b)\in A\times B (a,b)∈A×B,如果其R下的象为1,则a与b符合关系R,记作aRb.反之不符合,并记作 a R̸ b a\not R b aRb.若A=B,则称R是A上的二元关系.
定义3.1.2 关系定义2
设A和B是两个集合。 A × B A\times B A×B的一个子集R称为从A到B的一个二元关系。如果 ( a , b ) ∈ R (a,b) \in R (a,b)∈R,则说他们符合关系R;反之不满足关系R。记录方式与3.1.1同。
定义3.1.3 定义域值域
设 R ⊆ A × B R \subseteq A \times B R⊆A×B,集合 { x ∣ x ∈ A ∧ ∃ y ∈ B , ( x , y ) ∈ R } \{x|x\in A \land \exists y \in B,(x,y)\in R\} {x∣x∈A∧∃y∈B,(x,y)∈R}为其定义域,记作 d o m ( R ) dom(R) dom(R).集合 { y ∣ y ∈ B ∧ ∃ x ∈ A , ( x , y ) ∈ R } \{y|y\in B \land \exists x \in A,(x,y)\in R\} {y∣y∈B∧∃x∈A,(x,y)∈R}为其值域,记作 r a n ( R ) ran(R) ran(R).
定义3.1.4 多值部分映射
AB两个集合,一个从 A A A到 2 B 2^B 2B的映射R叫做从A到B的一个多值部分映射.如果 a ∈ A a\in A a∈A, R ( a ) = ∅ R(a) = \empty R(a)=∅,则称 R R R在a无定义.如果 R ( a ) ≠ ∅ , ∀ b ∈ R ( a ) R(a) \neq \empty,\forall b \in R(a) R(a)=∅,∀b∈R(a)称为a在R下的一个象或值.
定义3.1.5 二元关系与多值部分映射
一个从A到B的多值部分映射R称为A到B的一个二元关系.
定理3.1.1 定义的等价关系
定义3.1.2与定义3.1.5等价.
定义3.1.6 n元关系
设 A 1 , A 2 , … , A n A_1,A_2,\dots,A_n A1,A2,…,An是n个集合,一个其笛卡尔乘积的子集R称为其间的一个n元关系,每个 A i A_i Ai称为R的一个域.
3.2 关系的性质
在本节中,我们讨论的是在 X X X上的二元关系 R R R,且使用的 x , y x,y x,y如无特殊说明均满足 x , y ∈ X x,y \in X x,y∈X.
定义3.2.1 自反关系
∀ x ∈ X , x R x \forall x \in X,xRx ∀x∈X,xRx.
定义3.2.2 反自反关系
∀ x ∈ X , ( x , x ) ∉ R , x R̸ x \forall x\in X,(x,x) \notin R,x \not R x ∀x∈X,(x,x)∈/R,xRx
定义3.2.3 对称关系
∀ x , y ∈ X , x R y ⇒ y R x \forall x,y \in X,xRy \Rightarrow yRx ∀x,y∈X,xRy⇒yRx.
定义3.2.4 反对称关系
∀ x , y ∈ X , x ≠ y , x R̸ y \forall x,y \in X,x\neq y,x\not R y ∀x,y∈X,x=y,xRy.注意,这里可以允许 x R x xRx xRx.
定义3.2.5 传递关系
∀ x , y , z ∈ X , if x R y , y R z , then x R z . \forall x,y,z \in X,{\text{if}}\quad xRy,yRz,{\text{then}}\quad xRz. ∀x,y,z∈X,ifxRy,yRz,thenxRz.
定义3.2.6 相容关系
自反且对称的关系称为相容关系.
定义3.2.7 关系的逆
R的逆记作 R − 1 R^{-1} R−1,是B到A的二元关系,且 R − 1 = { ( y , x ) ∣ ( x , y ) ∈ R } R^{-1} = \{(y,x) | (x,y) \in R\} R−1={(y,x)∣(x,y)∈R}.
3.3 关系的合成
R ⊆ A × B , S ⊆ B × C , R i 都 是 关 系 R \subseteq A\times B,S\subseteq B\times C,R_i都是关系 R⊆A×B,S⊆B×C,Ri都是关系.
定义3.3.1 关系的合成
R
R
R与
S
S
S的合成是A到C的一个二元关系,记作
R
∘
S
R \circ S
R∘S.4这里表示方式与映射的合成是相反的!这里表示方式与映射的合成是相反的!这里表示方式与映射的合成是相反的!**
R
∘
S
=
{
(
a
,
c
)
∣
(
a
,
c
)
∈
A
×
C
,
∃
b
∈
B
,
a
R
b
,
b
R
c
}
R\circ S = \{(a,c)|(a,c)\in A\times C,\exist b\in B,aRb,bRc\}
R∘S={(a,c)∣(a,c)∈A×C,∃b∈B,aRb,bRc}
定理3.3.1 结合律
R 1 ∘ ( R 2 ∘ R 3 ) = ( R 1 ∘ R 2 ) ∘ R 3 R_1 \circ (R_2 \circ R_3) = (R_1 \circ R_2) \circ R_3 R1∘(R2∘R3)=(R1∘R2)∘R3.
定理3.3.2 交并运算
- R 1 ∘ ( R 2 ∪ R 3 ) = ( R 1 ∘ R 2 ) ∪ ( R 2 ∘ R 3 ) R_1 \circ (R_2 \cup R_3) = (R_1 \circ R_2)\cup (R_2\circ R_3) R1∘(R2∪R3)=(R1∘R2)∪(R2∘R3).
- R 1 ∘ ( R 2 ∩ R 3 ) ⊆ ( R 1 ∘ R 2 ) ∩ ( R 1 ∘ R 3 ) R_1\circ (R_2\cap R_3)\subseteq (R_1 \circ R_2)\cap(R_1\circ R_3) R1∘(R2∩R3)⊆(R1∘R2)∩(R1∘R3).
- ( R 2 ∪ R 3 ) ∘ R 4 = ( R 2 ∘ R 4 ) ∪ ( R 3 ∘ R 4 ) (R_2 \cup R_3) \circ R_4 = (R_2\circ R_4) \cup (R_3\circ R_4) (R2∪R3)∘R4=(R2∘R4)∪(R3∘R4).
- ( R 2 ∩ R 3 ) ∘ R 4 ⊆ ( R 2 ∘ R 4 ) ∩ ( R 3 ∘ R 4 ) (R_2\cap R_3) \circ R_4 \subseteq (R_2\circ R_4) \cap (R_3\circ R_4) (R2∩R3)∘R4⊆(R2∘R4)∩(R3∘R4)
定理3.3.3 关系的逆的合成
- ( R 1 ∘ R 2 ) − 1 = R 2 − 1 ∘ R 1 − 1 (R_1 \circ R_2)^{-1} = R_2^{-1}\circ R_1^{-1} (R1∘R2)−1=R2−1∘R1−1.
- ( R ∘ R − 1 ) − 1 = R ∘ R − 1 (R\circ R^{-1})^{-1} = R\circ R^{-1} (R∘R−1)−1=R∘R−1是对称的.
定理3.3.4 传递关系
R ∘ R ⊆ R ⇔ R R\circ R \subseteq R \Leftrightarrow R R∘R⊆R⇔R是对称关系
定理3.3.5 幂
R m ∘ R n = R m + n , ( R m ) n = R m n R^m \circ R^n = R^{m+n},(R^m)^n = R^{mn} Rm∘Rn=Rm+n,(Rm)n=Rmn
定理3.3.6 抽屉原理
∣ X ∣ = n , ∣ X × X ∣ = n 2 , R 共 有 2 ( n 2 ) 个 , 故 ∃ s , t , 0 ≤ s < t ≤ 2 ( n 2 ) , R s = R t . |X| = n,|X\times X| = n^2,R共有2^{(n^2)}个,故\\ \exists s,t, 0 \leq s < t \leq 2^{(n^2)},R^s = R^t. ∣X∣=n,∣X×X∣=n2,R共有2(n2)个,故∃s,t,0≤s<t≤2(n2),Rs=Rt.
定理3.3.7 幂次扩展
已知 s < t , R s = R t s<t,R^s = R^t s<t,Rs=Rt.
- R s + k = R t + k , k ≥ 0 R^{s+k} = R^{t+k},k \geq 0 Rs+k=Rt+k,k≥0
- R s + k ( t − s ) = R s , k ≥ 0 R^{s+k(t-s)} = R^s,k\geq 0 Rs+k(t−s)=Rs,k≥0.
- S = { R 0 , R , R 2 , … , R t } , ∀ q ∈ N , R q ∈ S S = \{R^0,R,R^2,\dots,R^t\},\forall q\in \N ,R^q \in S S={R0,R,R2,…,Rt},∀q∈N,Rq∈S.
定理3.3.8 对称传递关系
R R R是对称传递等价于 R = R ∘ R − 1 R = R \circ R^{-1} R=R∘R−1.
3.4 关系的闭包
假设 R R R是一个关系,某个关系性质A的闭包就是包含关系R且满足性质A的所有关系的交.简单来说就是:扩展最少的东西然后使它满足性质A。
定义3.4.1 传递闭包
R是X上的关系,X上一切包含R的传递关系的交称为R的传递闭包,用
R
+
R^+
R+表示。
R
+
=
∩
R
⊂
R
′
R
′
,
R
′
是
传
递
的
R^+ = \cap_{R\subset R'}R',R'是传递的
R+=∩R⊂R′R′,R′是传递的
定理3.4.1 传递闭包是传递关系
定理3.4.2 计算传递闭包
R + = ∪ n = 1 ∞ R n R^+ = \cup_{n=1}^{\infty}R^n R+=∪n=1∞Rn
定理3.4.3 计算传递闭包2
R + = ∪ n = 1 ∣ X ∣ R n R^+ = \cup_{n=1}^{|X|}R^n R+=∪n=1∣X∣Rn
定理3.4.4 性质
R , S R,S R,S是 X X X上的二元关系
- ∅ + = ∅ \empty^+ = \empty ∅+=∅
- R ⊆ R + R \subseteq R^+ R⊆R+
- ( R + ) + = R + (R^+)^+ = R^+ (R+)+=R+
- ( R ∪ S ) + ⊇ R + ∪ S + (R\cup S)^+ \supseteq R^+ \cup S^+ (R∪S)+⊇R+∪S+.
定义3.4.2 自反传递闭包
包含R的所有自反传递关系的交就是自反传递闭包,记作 R ∗ R^* R∗
定理3.4.5 自反传递关系计算
R ∗ = R 0 ∪ R + R^* = R^0\cup R^+ R∗=R0∪R+
几个常见的记法
- 自反闭包记作 r ( R ) r(R) r(R)
- 对称闭包记作 s ( R ) s(R) s(R)
定理3.4.6 自反、传递闭包的性质
- s ( r ( R ) ) = r ( s ( R ) ) s(r(R)) = r(s(R)) s(r(R))=r(s(R))
- r ( R + ) = r ( R ) + = R ∗ r(R^+) = r(R)^+ = R^* r(R+)=r(R)+=R∗
- s ( R ) + ⊇ s ( R + ) s(R)^+ \supseteq s(R^+) s(R)+⊇s(R+).有向图联通关系少于相同边布局的无向图
3.5 关系矩阵与关系图
关系矩阵
设X是m元集,有编号,记作
X
=
{
x
1
,
x
2
,
x
3
,
…
,
x
m
}
X = \{x_1,x_2,x_3,\dots,x_m\}
X={x1,x2,x3,…,xm},同理Y是n元集。R是X到Y的一个二元关系。由R定义出一个
m
×
n
m\times n
m×n的矩阵
B
=
(
b
i
j
)
B = (b_{ij})
B=(bij):
b
i
j
=
{
1
,
if
x
i
R
y
j
0
,
if
x
i
R̸
y
j
b_{ij} = \begin{cases} 1,{\text{if}} \ x_i R y_j\\ 0,{\text{if}} \ x_i \not R y_j \end{cases}
bij={1,if xiRyj0,if xiRyj
矩阵B被称为关系R的矩阵。
命题3.5.1 两个编号法互换
如果有两种编号法,则对于同一个关系R可以假设其在两个表示法下有
B
1
,
B
2
B_1,B_2
B1,B2两个关系矩阵,则一定存在一个每行每列只有一个1的布尔矩阵(置换矩阵)
P
1
,
P
2
P_1,P_2
P1,P2满足
B
1
=
P
1
B
2
P
2
B_1 = P_1 B_2 P_2
B1=P1B2P2
命题3.5.2 性质与矩阵
- 自反关系,对角线全1
- 反自反关系,对角线全0
- 对称关系,对称矩阵
- 反对称关系, b i j ≠ b j i b_{ij} \neq b_{ji} bij=bji,除非对角线
- 传递关系, b i j = 1 , b j k = 1 ⇒ b i k = 1 b_{ij} =1,b_{jk} = 1\Rightarrow b_{ik} = 1 bij=1,bjk=1⇒bik=1.
- R − 1 R^{-1} R−1对应 B T B^T BT,转置矩阵。
命题3.5.3 布尔矩阵运算规则
A , B , C A,B,C A,B,C都是 n n n阶布尔方阵,这 C = A ∘ B C = A \circ B C=A∘B的定义是 c i j = ∨ ( a i k ∧ b k j ) c_{ij} = \lor (a_{ik} \land b_{kj}) cij=∨(aik∧bkj)
-
A ∨ B = B ∨ A , A ∧ B = B ∧ A A \lor B = B \lor A,A\land B = B \land A A∨B=B∨A,A∧B=B∧A
-
( A ∧ B ) ∧ C = A ∧ ( B ∧ C ) (A\land B)\land C = A\land (B\land C) (A∧B)∧C=A∧(B∧C)
( A ∨ B ) ∨ C = A ∨ ( B ∨ C ) (A\lor B)\lor C = A\lor (B\lor C) (A∨B)∨C=A∨(B∨C)
( A ∘ B ) ∘ C = A ∘ ( B ∘ C ) (A\circ B)\circ C = A\circ (B\circ C) (A∘B)∘C=A∘(B∘C)
-
A ∧ ( B ∨ C ) = ( A ∧ B ) ∨ ( A ∧ C ) A\land(B\lor C) = (A\land B) \lor (A\land C) A∧(B∨C)=(A∧B)∨(A∧C)
A ∨ ( B ∧ C ) = ( A ∨ B ) ∧ ( A ∨ C ) A\lor(B \land C) = (A\lor B) \land (A \lor C) A∨(B∧C)=(A∨B)∧(A∨C)
A ∘ ( B ∨ C ) = ( A ∘ B ) ∨ ( A ∘ C ) A\circ (B\lor C) = (A\circ B) \lor (A\circ C) A∘(B∨C)=(A∘B)∨(A∘C)
( B ∨ C ) ∘ A = ( B ∘ A ) ∨ ( C ∘ A ) (B\lor C)\circ A = (B\circ A) \lor (C\circ A) (B∨C)∘A=(B∘A)∨(C∘A)
定理3.5.1 关系与矩阵对应
RS是两个关系,对应矩阵
B
R
,
B
S
B_R,B_S
BR,BS,则其相应交并后的矩阵:
B
R
∪
S
=
B
R
∨
B
S
,
B
R
∩
S
=
B
R
∧
B
s
B_{R\cup S} = B_R \lor B_S,B_{R\cap S} = B_R\land B_s
BR∪S=BR∨BS,BR∩S=BR∧Bs
定理3.5.2 关系合成与矩阵
B R ∘ S = B R ∘ B S B_{R\circ S} = B_R \circ B_S BR∘S=BR∘BS.前提是必须是有限集上的关系
定理3.5.3 传递闭包矩阵运算
B R + = B + = ∨ i = 1 n B R ( i ) B_{R^+} = B^+ = \lor_{i=1}^{n} B_R^{(i)} BR+=B+=∨i=1nBR(i).
华沙算法
B是原关系矩阵,A是要求的传递闭包
- A ← B A\leftarrow B A←B
- k ← 1 k \leftarrow 1 k←1
- i ← 1 i \leftarrow 1 i←1
- if a i k = 1 , ∀ j ∈ [ 1 , n ] , a i j ← a i j ∨ a k j {\text{if}}\ a_{ik} = 1,\forall j \in [1,n],a_{ij} \leftarrow a_{ij}\lor a_{kj} if aik=1,∀j∈[1,n],aij←aij∨akj
- i ← i + 1 , if i ≤ n , goto 4 i \leftarrow i+1,{\text{if}}\quad i \leq n,{\text{goto}}\ 4 i←i+1,ifi≤n,goto 4
- k ← k + 1 , if k ≤ n , goto 3 k \leftarrow k+1,{\text{if}}\quad k \leq n,{\text{goto}}\ 3 k←k+1,ifk≤n,goto 3
关系图画法
- 元素:一个点表示一个元素,在旁边标上这个元素的名字。
- 关系:一个 x R y xRy xRy表示为一个从x到y的有向线段。
- 特殊关系: x R y , y R x xRy,yRx xRy,yRx画个圆, x R x xRx xRx自己指向自己的闭环(自闭)
- 自反:都有自环。反自反,没有自环。
- 对称:有矢线,则必有环。反对称:除了自环,没环。
- 传递:一个矢线(a,b),一个矢线(b,c),则必由矢线(a,c)
对角分块矩阵与关系图
如果关系图里面可以划分成好几个不相连的块,按照这个分组方法对应到关系矩阵中,就是分块对角阵。
3.6 等价关系与集合的划分
定义3.6.1 等价关系
集合 X X X上的二元关系 R R R被称为等价关系当且仅当其满足以下性质:
- R是自反关系, x R x xRx xRx
- R是对称的, x R y , y R x xRy,yRx xRy,yRx
- R是传递的, x R y , y R z ⇒ x R z xRy,yRz\Rightarrow xRz xRy,yRz⇒xRz
抽象讨论时,常用 ≅ \cong ≅来表示等价关系。常见的关系有:恒等关系、同余关系、无向图上的到达连通关系。
定义3.6.2 等价类
设 ≅ \cong ≅是X上的等价关系, x ∈ X , E x = { y ∣ y ∈ X ∧ x ≅ y } , E x ⊆ X x\in X,E_x = \{y|y\in X \land x \cong y\},E_x\subseteq X x∈X,Ex={y∣y∈X∧x≅y},Ex⊆X,称为x关于 ≅ \cong ≅的等价类,或简称为x的等价类.也常被记作[x] (这边那个括号的横线部分应该是斜着的,但我没找到那个符号的公式).
定义3.6.3 划分
X是一个集合,X的一些非空子集形成的集族A为X的一个划分,当且仅当A有以下性质:
- ∀ B 1 , B 2 ∈ A , if B 1 ≠ B 2 , B 1 ∩ B 2 = ∅ \forall B_1,B_2 \in A,{\text{if}}\ B_1 \neq B_2,B_1\cap B_2 = \empty ∀B1,B2∈A,if B1=B2,B1∩B2=∅
- ⋃ B ∈ A B = X \bigcup_{B\in A} B = X ⋃B∈AB=X.
如果A是X的一个划分,且 ∣ A ∣ = k |A| = k ∣A∣=k,则称A为X的一个k-划分.例如: { [ 0 ] , [ 1 ] } \{[0],[1]\} {[0],[1]}是模2同余的一个2-划分.
定理3.6.1 等价类与划分
等价关系的所有等价类的集合是X的一个划分.
定理3.6.2 划分表示关系
如果A是X的一个划分,那么令 ≅ = ⋃ B ∈ A B × B \cong = \bigcup_{B\in A} B\times B ≅=⋃B∈AB×B是X上的一个等价关系,且A就是它等价类之集.
定理3.6.3 用划分判定等价关系
原话:集合 X X X上的二元关系 ≅ \cong ≅是一个等价关系,当且仅当存在 X X X的一个划分 A A A使得 x ≅ y x\cong y x≅y的充分必要条件是 ∃ B ∈ A \exists B \in A ∃B∈A使得 x , y ∈ B x,y\in B x,y∈B.(我觉得很抽象)
我的理解: X X X上有个二元关系 R R R,以下是充要条件
- 存在一个划分 A = { B 1 , B 2 , B 3 , … , B n } A = \{B_1,B_2,B_3,\dots,B_n\} A={B1,B2,B3,…,Bn}
- ∀ x R y ⇔ x ∈ B t 且 y ∈ B t \forall xRy\Leftrightarrow x\in B_t{且}y \in B_t ∀xRy⇔x∈Bt且y∈Bt
也就是说:把所有有关系的都搞到一个集合,然后形成的集族是原集合X的一个划分.
定义3.6.4 商集
设 ≅ \cong ≅是X上的等价关系.由 ≅ \cong ≅确定的X的划分- ≅ \cong ≅的所有等价类之集称为X对 ≅ \cong ≅的商集,记作 X / ≅ X/\cong X/≅.公式化表示为 X / ≅ = { [ x ] ∣ x ∈ X , [ x ] 是 x 的 等 价 类 } X/\cong = \{[x]|x\in X,[x]是x的等价类\} X/≅={[x]∣x∈X,[x]是x的等价类}.
自然映射
对于在A上的等价关系R,定义映射: g : A → A / R g:A\rightarrow A/R g:A→A/R为自然映射.
定理3.6.4 等价闭包
我们用
e
(
R
)
e(R)
e(R)来表示X上包含R的等价关系的交.(这个证明没看懂)
e
(
R
)
=
(
R
∪
R
−
1
)
∗
e(R) = (R\cup R^{-1})^*
e(R)=(R∪R−1)∗
定理3.6.5 等价关系合成
如果 R , S R,S R,S都是等价关系,那么: R ∘ S R\circ S R∘S是等价关系 ⇔ R ∘ S = S ∘ R \Leftrightarrow R\circ S = S\circ R ⇔R∘S=S∘R.
证明思路:向左先 R − 1 = R R^{-1}=R R−1=R对称, R 2 ⊆ R R^2 \subseteq R R2⊆R传递.
定理3.6.5推论 等价关系合成
如果 R , S R,S R,S都是等价关系,那么: R ∘ S R\circ S R∘S是等价关系 ⇔ R ∘ S ⊆ S ∘ R \Leftrightarrow R\circ S \subseteq S\circ R ⇔R∘S⊆S∘R.
证明思路:只要证明 S ∘ R ⊆ R ∘ S S\circ R \subseteq R\circ S S∘R⊆R∘S即可.
定理3.6.6 等价关系合成与传递闭包
R , S 都 是 X 的 等 价 关 系 , 则 R ∘ S = ( R ∪ S ) + R,S都是X的等价关系,则\\ R\circ S = (R\cup S)^+ R,S都是X的等价关系,则R∘S=(R∪S)+
3.7 映射按等价关系的划分
定义3.7.1 映射的核
设 f : X → Y f:X\rightarrow Y f:X→Y.在X上定义二元关系 E f E_f Ef如下: ∀ a , b ∈ X , a E j b ⇔ f ( a ) = f ( b ) \forall a,b \in X,aE_jb \Leftrightarrow f(a) = f(b) ∀a,b∈X,aEjb⇔f(a)=f(b).称 E f E_f Ef为由f导出的关系.由定义可知:该关系自反,传递,对称,因此是一个等价关系.
由f导出的等价关系常叫做f的核.f的核常记作 K e r ( f ) Ker(f) Ker(f).其中X对 K e r ( f ) Ker(f) Ker(f)的商集可以表示为 X / K e r ( f ) = { f − 1 ( y ) ∣ y ∈ Y , f − 1 ( y ) ≠ ∅ } X/Ker(f)=\{f^{-1}(y)|y\in Y,f^{-1}(y) \neq \empty\} X/Ker(f)={f−1(y)∣y∈Y,f−1(y)=∅}.
换句话说就是把 f f f对应的相等的所有元素构成集合,然后构成的集族.对应一个等价关系就叫f的核.
定理3.7.1 映射的分解
一个映射 f : X → Y f:X\rightarrow Y f:X→Y可以被分解为X到 X / K e r ( f ) X/Ker(f) X/Ker(f)的满射(自然映射) γ \gamma γ与 X / K e r ( f ) X/Ker(f) X/Ker(f)到Y的单射 f ˉ \bar f fˉ的合成.换言之: f = f ˉ ∘ γ f = \bar f\circ \gamma f=fˉ∘γ(特别注意,这里是映射合成不是关系合成).
推论3.7.1 满射条件
f ˉ \bar f fˉ是一一对应当且仅当 f f f是满射
定理3.7.2 唯一性
定理3.7.1中的单射 f ˉ \bar f fˉ是唯一的.
定义3.7.3 两个关系相容
设 f : X → Y , ≅ f:X\rightarrow Y,\cong f:X→Y,≅是X上的等价关系.如果 ∀ x , y ∈ X , x ≅ y ⇒ f ( x ) = f ( y ) \forall x,y \in X,x\cong y\Rightarrow f(x) = f(y) ∀x,y∈X,x≅y⇒f(x)=f(y),那么就说 f f f和 ≅ \cong ≅是相容的.
设 f : X → Y , ≅ f:X\rightarrow Y,\cong f:X→Y,≅是X上的等价关系,并且 f f f与 ≅ \cong ≅相容.定义一个 f ˉ : X / ≅ → Y . f ˉ ( [ a ] ) = f ( a ) \bar f:X/\cong \rightarrow Y.\bar f([a]) = f(a) fˉ:X/≅→Y.fˉ([a])=f(a). γ \gamma γ是X的自然映射,可知: f = f ˉ ∘ γ = f ˉ ( γ ( x ) ) f = \bar f \circ \gamma = \bar f(\gamma(x)) f=fˉ∘γ=fˉ(γ(x)).
但上述 f ˉ \bar f fˉ不一定是单射.单射当且仅当 ≅ = K e r ( f ) \cong = Ker(f) ≅=Ker(f).
3.8 偏序关系与偏序集
定义3.8.1 偏序关系
R是X上的二元关系,R是偏序关系的条件为:
- R是自反的
- R是反对称的
- R是传递的
常见的偏序关系有:小于等于,小于,拓扑图上的联通关系。常用 ≤ \leq ≤表示偏序关系,读作"小于等于".约定 x ≠ y , x ≤ y x\neq y,x \leq y x=y,x≤y记作 x < y x<y x<y.同时我们表示其逆为 ≥ , > \geq,> ≥,>.
如果两个元素没有这个关系,那么称他们不可比较.否则称为可比较.
定义3.8.2 偏序集
设 ≤ \leq ≤是X上的偏序关系,则称二元组 ( X , ≤ ) (X,\leq) (X,≤)为偏序集.可以认为是根据后面的偏序关系给X元素了一个"顺序".
定义3.8.3 全序关系与全序集
一个偏序关系 R R R被称为全序关系的条件为:
- R R R是一个偏序关系
- a R b , b R a aRb,bRa aRb,bRa至少有一个成立.
全序关系也被称为线序关系.常见的有:小于等于,大于等于,有向链.
X与全序关系R构成的二元组 ( X , R ) (X,R) (X,R)称为全序集.
需要注意的是,全序关系和偏序关系一个明显的不同就是全序关系任何两个元素都可比较,不会产生不可比较的元素对.
定义3.8.4(1) 盖住关系
设 ( X , ≤ ) (X,\leq) (X,≤)是一个偏序集,我们称y盖住x当且仅当其满足下列条件:
- x < y x<y x<y
- ∀ z ∈ X , x ≤ z ≤ y ⇒ x = z 或 y = z \forall z \in X,x\leq z\leq y\Rightarrow x=z 或 y=z ∀z∈X,x≤z≤y⇒x=z或y=z
说人话:xRy成立,且中间插不进去.
如果y盖住x,记作 x ⊂ ∞ y x\overset{\infty}{\subset}y x⊂∞y.y称为x的后继,x称为y的前驱.(相当于有向线段 ( x , y ) (x,y) (x,y))
定义3.8.4(2) Hasse哈斯图
哈斯图是用来描述偏序关系的一种图.我们假设有一个关系R是X上的偏序关系.画图规则如下:
- 省去自环。由于都是自反的,因此不用画。
- 只画前驱后继之间的边。由于是传递的,所以按前驱后继总能传到。
- 后继画在上面,前驱画在下面。由于是反对称的,因此这样画好看且不用画有向线段(矢线)
实际上,这个图就是盖住关系的关系图。
子偏序集
设 ( X , ≤ ) (X,\leq) (X,≤)是一个偏序集,把偏序关系限制在X的子集 A A A上得到了 ≤ A = ≤ ∩ A × A \leq_A = \leq \cap A\times A ≤A=≤∩A×A.这时候 ( A , ≤ A ) (A,\leq_A) (A,≤A)是一个偏序集,但是我们用 ( A , ≤ ) (A,\leq) (A,≤)来代替表示,此时 ≤ \leq ≤被理解为在A上的限制 ≤ A \leq_A ≤A.
定义3.8.5 链与反链
( X , ≤ ) (X,\leq) (X,≤)偏序集, A ⊆ X A\subseteq X A⊆X.
- ∀ a , b ∈ A , a ≤ b 或 b ≤ a \forall a,b \in A,a\leq b 或b\leq a ∀a,b∈A,a≤b或b≤a.A是X中的链.
- ∀ a ≠ b ∈ A , a ≰ b 且 b ≰ a \forall a\neq b\in A,a\not \leq b 且 b \not \leq a ∀a=b∈A,a≤b且b≤a,A是X中的反链.
∣ A ∣ |A| ∣A∣称为链的长度.
定义3.8.6 上界下界
( X , ≤ ) (X,\leq) (X,≤)偏序集, B ⊆ X , a ∈ X B\subseteq X,a\in X B⊆X,a∈X.
- ∀ b ∈ B , b ≤ a \forall b \in B,b\leq a ∀b∈B,b≤a称 a a a为B的一个上界.
- ∀ b ∈ B , a ≤ b \forall b \in B,a \leq b ∀b∈B,a≤b称 a a a为B的一个下界.
注意:上下界不一定存在,存在也不一定唯一,不一定在B中。
定义3.8.7 最大最小元素
( X , ≤ ) (X,\leq) (X,≤)偏序集, B ⊆ X , b ∈ B B\subseteq X,b\in B B⊆X,b∈B.
- ∀ x ∈ B , x ≤ b \forall x\in B,x \leq b ∀x∈B,x≤b称 b b b为B的最大元素.
- ∀ x ∈ B , b ≤ x \forall x\in B,b \leq x ∀x∈B,b≤x称 b b b为B的最小元素.
注意:最大最小元素不一定存在,若有则必唯一。
定义3.8.8 上确界、下确界
( X , ≤ ) (X,\leq) (X,≤)偏序集, B ⊆ X B\subseteq X B⊆X.
- 上界的最小元素叫做上确界,记作 sup B \sup B supB.
- 下界的最大元素叫做下确界,记作 inf B \inf B infB.
关于上述六个概念的个人理解
在原Hasse哈斯图上,上界一定是他们的公共祖先;下界一定是公共儿子。最大元素和最小元素则是限制下的哈斯图上的上下界;上确界,辈分最低的上界;下确界,辈分最高的下界。
定义3.8.9 极大元素、极小元素
( X , ≤ ) (X,\leq) (X,≤)偏序集, A ⊆ X , a ∈ A A\subseteq X,a\in A A⊆X,a∈A。
- ∄ l ≠ a ∈ A , a ≤ l \not \exists l \neq a\in A,a\leq l ∃l=a∈A,a≤l称a为A的极大元素
- ∄ l ≠ a ∈ A , l ≤ a \not \exists l \neq a\in A,l\leq a ∃l=a∈A,l≤a称a为A的极小元素
说人话就是,没有比它大就叫极大;没有比它小就叫极小。
注意:极大极小不一定唯一,也不一定是最大最小。最大最小一定是极大极小。
定理3.8.1 链转反链
( X , ≤ ) (X,\leq) (X,≤)偏序集,X的链长最大为n。则X的全部元素能被分成n个非空的不相交反链之并。(一定存在一种n-划分,使得每一个子集合都是反链)归纳法证明。
推论3.8.1 链长与集合大小关系
( X , ≤ ) (X,\leq) (X,≤)偏序集, ∣ X ∣ = n m + 1 |X|=nm+1 ∣X∣=nm+1.则X中或存在一个大于n的链,或存在一个大于m的反链.nm可以任意分解,无限制要求.反证法结合定理3.8.1即可.
定义3.8.10 拟序关系
X上的二元关系R称为拟序关系的条件是:
- R是反自反的.也就是没有 x R x xRx xRx
- R是传递的.
- (可以推出它一定是反对称的)
常记作 < < <,读作"小于".常见例子 < , ⊂ <,\subset <,⊂.
与一个偏序关系有以下关系: ≤ = < ∪ I X 或 < = ≤ ∖ I X \leq = < \cup I_X 或 < = \leq \setminus I_X ≤=<∪IX或<=≤∖IX.
*3.9 良序集与数学归纳法
这个东西课本上都是打星号内容
[主要内容]
-
全序集每个非空子集都有最小元素,则称为良序集.(无限集合可能就不是良序集,例如整数对小于等于)有限全序集一定是良序集.
-
良序集任一子集都是良序集.
-
非空良序集有唯一最小元素.且称为起始元素.
-
任何一个集合都可以良序化.
-
数学归纳法分简单归纳法原理和强归纳法原理.
-
简单归纳法原理:
- 证 s ( 1 ) s(1) s(1)成立.
- 假设 s ( n ) s(n) s(n),证明 s ( n + 1 ) s(n+1) s(n+1)成立.
-
强归纳法原理:
- 证 s ( 1 ) s(1) s(1)成立.
- 假设 s ( 1 ) , s ( 2 ) , … , s ( n ) s(1),s(2),\dots,s(n) s(1),s(2),…,s(n)成立,证 s ( n + 1 ) s(n+1) s(n+1)成立.
-
简单归纳法原理与强归纳法原理等价.
-
简单归纳法原理与自然数集 N \N N对小于等于关系构成的良序集等价.(离谱)
-
( N , ≤ ) (\N,\leq) (N,≤)为良序集当且仅当 ( N , ≤ ) (\N,\leq) (N,≤)的任一有上界的子集 L L L有最大元素.
四、无穷集合及其基数
4.1 可数集
可数集与不可数集的概念是针对无穷集合的,有穷集合没有相关概念。
集
合
{
有
限
集
,
有
穷
集
无
限
集
,
无
穷
集
{
可
数
集
(
无
穷
可
数
集
合
,
可
列
集
)
不
可
数
集
(
不
可
数
无
限
集
)
集合\begin{cases} 有限集,有穷集\\ 无限集,无穷集\begin{cases} 可数集(无穷可数集合,可列集)\\ 不可数集(不可数无限集) \end{cases} \end{cases}
集合⎩⎪⎨⎪⎧有限集,有穷集无限集,无穷集{可数集(无穷可数集合,可列集)不可数集(不可数无限集)
定义4.1.1 可数集/不可数集
如果从自然数集 N \N N到集合X存在一个一一对应 f : N → X f:\N\rightarrow X f:N→X,则称集合X是无穷可数集合,简称可数集或可列集.如果X不是可数集,且X不是有限集,则称X为无穷不可数集,简称不可数集.
或者说,X是可数集当且仅当其存在映射 f : X → N , g : N → X f:X\rightarrow \N,g:\N \rightarrow X f:X→N,g:N→X.
定理4.1.1 可数集判定
集合A为可数集的充分必要条件为A的全部元素可以排成无重复项的序列
a
1
,
a
2
,
a
3
,
a
4
,
…
,
a
n
,
…
a_1,a_2,a_3,a_4,\dots,a_n,\dots
a1,a2,a3,a4,…,an,…
因此A可以写成
{
a
1
,
a
2
,
a
3
,
…
,
a
n
,
…
}
\{a_1,a_2,a_3,\dots,a_n,\dots\}
{a1,a2,a3,…,an,…}.
定理4.1.2 可数子集
无限集A必包含有可数子集.
定理4.1.3 可数集无限子集
可数集的任一无限子集也是可数集.
推论4.1.1 可数集减有限集
从可数集A中除去一个有限集M,则 A ∖ M A\setminus M A∖M仍是可数集.
定理4.1.4 可数集并有限集
设A是可数集,M是有限集,则 A ∪ M A\cup M A∪M是可数集.
定理4.1.5 有限个可数集的并
设 A 1 , A 2 , … , A n A_1,A_2,\dots,A_n A1,A2,…,An是n个可数集,则 ⋃ i = 1 n A i \bigcup_{i=1}^{n} A_i ⋃i=1nAi也是可数集
定理4.1.6 可数无穷多有限集并
可数无穷多个有限集的并至多是可数集.
定理4.1.7 可数无穷多可数集并
可数无穷多个可数集的并是可数集.其中构造方法为反对角线法.
定理4.1.8 有理数集
有理数集 Q Q Q是可数集.[ a b a\over b ba,两个都是可数集]
推论4.1.2 区间有理数
区间[0,1]之间的一切有理数之集是可数集.
定理4.1.9 无限集并
M是一个无限集,A是可数集或有限集,则 M ∼ M ∪ A M\sim M\cup A M∼M∪A.[证明思路:取M一个可数集 D D D,然后 D ∪ A ∼ D D\cup A \sim D D∪A∼D,剩余部分对等.]
定理4.1.10 无穷集减至多可数集
M无穷不可数集,A是M的至多可数子集.则 M ∼ M ∖ A M\sim M\setminus A M∼M∖A.[证明思路: ( M ∖ A ) ∼ ( M ∖ A ) ∪ A (M\setminus A)\sim (M\setminus A) \cup A (M∖A)∼(M∖A)∪A.]
定义4.1.2 无穷集合,无限集合定义
凡是能与自身的一个真子集对等的集合称为无穷集合,或无限集合.
定理4.1.11 有限个可数集的笛卡尔积
设 A 1 , A 2 , A 3 , … , A n A_1,A_2,A_3,\dots,A_n A1,A2,A3,…,An是可数集,则其笛卡尔乘积 A 1 × A 2 × A 3 × ⋯ × A n A_1\times A_2 \times A_3 \times \cdots \times A_n A1×A2×A3×⋯×An是可数集.证明方法:归纳法.
推论4.1.3 代数多项式
整系数代数多项式的全体是一个可数集
定义4.1.3 代数数
整系数代数多项式的根称为代数数.非代数数称为超越数.由于每个多项式仅有有限个根,故代数数集市可数集.
定理4.1.12 代数数全体
代数数的全体是一个可数集.
4.2 连续统集
这一节主要讨论不可数集
集
合
{
有
限
集
,
有
穷
集
无
限
集
,
无
穷
集
{
可
数
集
(
无
穷
可
数
集
合
,
可
列
集
)
⭐
不
可
数
集
(
不
可
数
无
限
集
)
集合\begin{cases} 有限集,有穷集\\ 无限集,无穷集\begin{cases} 可数集(无穷可数集合,可列集)\\ ⭐不可数集(不可数无限集) \end{cases} \end{cases}
集合⎩⎪⎨⎪⎧有限集,有穷集无限集,无穷集{可数集(无穷可数集合,可列集)⭐不可数集(不可数无限集)
定理4.2.1 [0,1]实数集是不可数集
区间[0,1]所有实数构成集合是不可数无穷集合.这个证明方法叫康托的对角线法!
证明:
-
区间中每个实数都可以写成十进制无限位小数形式,即 0. a 1 a 2 … 0.a_1a_2\dots 0.a1a2…其中每个 a i a_i ai都是[0,9]之间的数字.约定每个有限位小数后补无限个0,这样每个小数就有唯一的表示形式.
-
假设定理4.2.1不成立.那么全体实数就是可数集.然后我们把每个 a i a_i ai排列称为一个序列 { a 1 , a 2 , a 3 , … } \{a_1,a_2,a_3,\dots\} {a1,a2,a3,…}.然后对于所有可数多个小数 A A A可以写成:
A 1 = 0. a 11 a 12 a 13 … A 2 = 0. a 21 a 22 a 23 … ⋮ A n = 0. a n 1 a n 2 a n 3 … ⋮ A_1 = 0.a_{11}a_{12}a_{13}\dots\\ A_2 = 0.a_{21}a_{22}a_{23}\dots\\ \vdots\\ A_n = 0.a_{n1}a_{n2}a_{n3}\dots\\ \vdots A1=0.a11a12a13…A2=0.a21a22a23…⋮An=0.an1an2an3…⋮ -
我们构造一个新的数字 B B B,它的每一位 B = 0. b 1 b 2 b 3 ⋯ n B = 0.b_1b_2b_3\dotsb_n B=0.b1b2b3⋯n确定规则如下:
b n = { 2 , 若 a n n = 1 1 , 若 a n n ≠ 1 , n ∈ N . [ a n n 就 是 A n 的 第 n 位 数 字 ] b_n = \begin{cases} 2,若a_{nn} = 1\\ 1,若a_{nn} \neq 1\\ \end{cases} ,n\in\N.[a_{nn}就是A_n的第n位数字] bn={2,若ann=11,若ann=1,n∈N.[ann就是An的第n位数字]
通俗点理解就是跟第一个数第一位不同,第二个数第二位不同… -
于是这个 B B B一定是[0,1]的实数,但不在现在的序列里.与之前的假设矛盾.故[0,1]实数集不是可数集.其又不是有限集,故它是无限不可数集.
定义4.2.1 连续统
凡是与[0,1]对等的集称为具有"连续统的势"的集,或简称连续统.
定理4.2.2 有限个连续统的并
有限个两两不相交连续统的并是一个连续统.即 ∪ i = 1 n A i ∼ [ 0 , 1 ] \cup_{i=1}^{n} A_i \sim [0,1] ∪i=1nAi∼[0,1].
定理4.2.3 无穷多连续统的并
无穷多个两两不相交连续统的并是连续统. ∪ i = 1 ∞ A i ∼ [ 0 , 1 ] \cup_{i=1}^{\infty} A_i \sim [0,1] ∪i=1∞Ai∼[0,1].
推论4.2.1 实数集-连续统
全体实数集是一个连续统.
推论4.2.2 无理数集-连续统
全体无理数之集是一个连续统
推论4.2.3 超越数集-连续统
超越数之集是一个连续统
上述的证明需要延伸到二进制小数表示上.
定理4.2.4 无穷01序列
令B位0/1的无穷序列所构成的集合,则 B ∼ [ 0 , 1 ] B\sim [0,1] B∼[0,1].
定理4.2.5 N的特征函数
令 S = { f ∣ f : N → { 0 , 1 } } S=\{f|f:\N \rightarrow \{0,1\}\} S={f∣f:N→{0,1}}则 S ∼ [ 0 , 1 ] S\sim [0,1] S∼[0,1].于是,若A位可数集, 2 A ∼ [ 0 , 1 ] 2^A \sim [0,1] 2A∼[0,1].证明: C h ( A ) ∼ 2 A Ch(A) \sim 2^A Ch(A)∼2A.
定理4.2.6 正整数无穷序列集
正整数无穷序列之集与区间[0,1]对等.
定理4.2.7 连续统的笛卡尔积
设 A 1 , A 2 A_1,A_2 A1,A2为连续统,则 A 1 × A 2 ∼ [ 0 , 1 ] A_1 \times A_2 \sim [0,1] A1×A2∼[0,1].构造方法:二进制小数交错排列.
推论4.2.1 平面点集
平面点集是一个连续统.
定理4.2.8 有限多连续统的笛卡尔积
A 1 , A 2 , … , A n A_1,A_2,\dots,A_n A1,A2,…,An是连续统,则 A 1 × A 2 × ⋯ × A n ∼ [ 0 , 1 ] A_1 \times A_2 \times \dots \times A_n \sim [0,1] A1×A2×⋯×An∼[0,1].
定理4.2.9 无穷不可数个连续统笛卡尔积
设 I ∼ [ 0 , 1 ] , ∀ l ∈ I , A l ∼ [ 0 , 1 ] I\sim [0,1],\forall l \in I,A_l \sim [0,1] I∼[0,1],∀l∈I,Al∼[0,1]可得: ∪ A l ∼ [ 0 , 1 ] \cup A_l \sim [0,1] ∪Al∼[0,1].
4.3 基数及其比较
基数的建立是在解决以下两个任务的基础上产生的
- 推广有穷集合的元素个数的概念,使它对无穷集合也有精确的含义.也就是无穷集合基数的概念.
- 确定比较两个基数大小的规则
数数的过程实际上是一个一一对应的过程,我们常讲的3个,也就是对应{1,2,3}与实际物体集的对应关系.
定义4.3.1 集合的基数
集合A的基数是一个符号,凡是与A对等的集合都赋以同一个记号.集合A的基数记作|A|.
定义4.3.1’ 集合的基数-集族定义形式
所有与集合A对等的集构成的集族称为集合A的基数.
公理化集合论中,集合的基数被认为一种特殊的良序集,即等价于已知集的最小序数.
集合的基数,也称为"势",“浓度”,用 A = , card A , ∣ A ∣ {\overset{=}A},\text{card} A,|A| A=,cardA,∣A∣来表示.
定义4.3.2 基数相等
集合A的基数与集合B的基数被认为是相等的,当且仅当 A ∼ B A\sim B A∼B,A与B一一对应.
定义4.3.3 大小关系
α , β \alpha,\beta α,β是两个基数,A,B分别是以它们为基数的集,如果A与B的一个真子集对等,但A却不能与B对等,则称基数 α \alpha α小于基数 β \beta β,记作 α < β \alpha < \beta α<β.
我们规定, α ≤ β ⇔ α < β 或 α = β \alpha \leq \beta \Leftrightarrow \alpha < \beta 或 \alpha = \beta α≤β⇔α<β或α=β.大于/大于等于反向定义.
显然:
- α ≤ β \alpha \leq \beta α≤β当且仅当存在单射 f : A → B f:A\rightarrow B f:A→B.
- α < β \alpha < \beta α<β当且仅当存在单射 f : A → B f:A\rightarrow B f:A→B但不存在A到B的双射
无穷集合的基数被称作是超穷数.也可以进行比较大小.
康托的连续统假设:
a是N的基数,c是[0,1]的基数,问题:“有没有这样一个基数b使得a<b<c”?
康托的假设:没有
目前的研究结果:连续统假设与集合论的公理不矛盾,但这个假设到现在没有证明.
定理4.3.1 (康托)定理
对任一集合 M M M, ∣ M ∣ < ∣ 2 M ∣ |M| < |2^M| ∣M∣<∣2M∣.构造法证明.
4.4 康托-伯恩斯坦定理
这个定理说明的内容是:基数确实可以进行唯一的比较.
定理4.4.1 康托-伯恩斯坦定理
设A,B两个集合.如果存在一个单射 f : A → B f:A\rightarrow B f:A→B与单射 g : B → A g:B\rightarrow A g:B→A,则A与B对等.
推论4.4.1 不动点
设 f : A → B , g : B → A f:A\rightarrow B,g:B\rightarrow A f:A→B,g:B→A都是单射.令 ϕ : 2 A → 2 B , ∀ E ∈ 2 A \phi : 2^A \rightarrow 2^B,\forall E \in 2^A ϕ:2A→2B,∀E∈2A, ϕ ( E ) = A ∖ g ( B ∖ f ( E ) ) \phi(E) = A\setminus g(B\setminus f(E)) ϕ(E)=A∖g(B∖f(E)),则 ϕ \phi ϕ在 2 A 2^A 2A中存在一个不动点 D ∈ 2 A D\in 2^A D∈2A,满足 ϕ ( D ) = D \phi(D) = D ϕ(D)=D.
换种方式:
ϕ
(
E
)
=
A
∖
g
(
B
∖
f
(
E
)
)
=
E
E
∪
g
(
B
∖
f
(
E
)
)
=
A
,
E
∩
g
(
B
∖
f
(
E
)
)
=
∅
g
(
B
∖
f
(
E
)
)
=
A
∖
E
\phi(E) = A\setminus g(B\setminus f(E)) = E\\ E \cup g(B\setminus f(E)) = A,E\cap g(B\setminus f(E)) = \empty\\ g(B\setminus f(E)) = A\setminus E
ϕ(E)=A∖g(B∖f(E))=EE∪g(B∖f(E))=A,E∩g(B∖f(E))=∅g(B∖f(E))=A∖E
也就是说,除去
f
(
E
)
f(E)
f(E)的部分用
g
g
g对应回来刚好是除去E的部分.
推论4.4.2 比较-两个关系不能同时成立
设 α , β \alpha,\beta α,β是两个基数,则 α = β , α < β , α > β \alpha = \beta, \alpha < \beta , \alpha > \beta α=β,α<β,α>β中任何两个式子不能同时成立.这里需要说明的是,这推论没说一定有一个成立.
推论4.4.3 两边夹
如果 A 1 ⊆ A 2 ⊆ A A_1\subseteq A_2 \subseteq A A1⊆A2⊆A,且 A 1 ∼ A A_1 \sim A A1∼A,则 A 2 ∼ A A_2 \sim A A2∼A.证明过程,利用基数相等+基数比较关系.
推论4.4.4 传递关系
设 α , β , γ \alpha,\beta,\gamma α,β,γ是三个基数,如果 α ≤ β , β ≤ γ \alpha \leq \beta,\beta \leq \gamma α≤β,β≤γ,则可以推出 α ≤ γ \alpha \leq \gamma α≤γ.
定理4.4.2 策梅罗-基数可比较定理
设
α
,
β
\alpha,\beta
α,β是两个基数,则以下三个式子恰好有一个成立.
α
<
β
,
α
>
β
,
α
=
β
\alpha < \beta,\alpha > \beta,\alpha = \beta
α<β,α>β,α=β
定义4.4.1 基数的加法
设 α , β \alpha,\beta α,β两个基数, A , B A,B A,B以它俩为基数的两个不相交集合,则 ∣ A ∪ B ∣ = γ |A\cup B|=\gamma ∣A∪B∣=γ称为基数 α , β \alpha,\beta α,β的和,并记作 α + β \alpha+\beta α+β.
定义4.4.2 基数的积
设 α , β \alpha,\beta α,β两个基数, A , B A,B A,B以它俩为基数的两个不相交集合,则 A × B A\times B A×B的基数 γ \gamma γ称为 α , β \alpha,\beta α,β的积,记作 α ⋅ β \alpha \cdot \beta α⋅β或者 α β \alpha\beta αβ.
定义4.4.3 基数的幂
设 α , β \alpha,\beta α,β两个基数(不可同时为0), A , B A,B A,B以它俩为基数的两个不相交集合,则 B A = { f ∣ f : A → B } B^A = \{f|f:A\rightarrow B\} BA={f∣f:A→B}的基数 γ \gamma γ称为 β 的 α \beta 的 \alpha β的α次幂,记作 β α \beta^\alpha βα. β 0 = 1 , 0 α = 0 , 0 0 无 意 义 \beta^0 = 1,0^\alpha = 0,0^0无意义 β0=1,0α=0,00无意义.
定理4.4.2 可数集基数与连续统基数
设a为可数集基数,c为连续统基数.对应之前的性质.
- ∀ n ∈ N ∪ { 0 } , n + a = a \forall n\in\N \cup \{0\},n+a = a ∀n∈N∪{0},n+a=a
- ∀ n ∈ N , n ⋅ a = a \forall n \in \N,n\cdot a = a ∀n∈N,n⋅a=a
- ∀ n i ∈ N , ∑ n i ≤ a \forall n_i \in \N,\sum n_i \leq a ∀ni∈N,∑ni≤a
- ∀ n ∈ N , n ⋅ c = c \forall n \in \N,n\cdot c = c ∀n∈N,n⋅c=c
- a ⋅ c = c a\cdot c = c a⋅c=c
- c ⋅ c = c c\cdot c = c c⋅c=c
- 2 a = c 2^a = c 2a=c
- ( 2 a ) a = 2 a (2^a)^a = 2^a (2a)a=2a
- a a = 2 a a^a = 2^a aa=2a
- ∀ n ∈ N , a n = a \forall n \in \N,a^n = a ∀n∈N,an=a
定理4.4.3 满足的结合计算规律
a,b,c都是任意基数.
-
基数加法和乘法分别满足交换律
a + b = b + a , a b = b a a+b = b+a,ab = ba a+b=b+a,ab=ba
-
基数的加法和乘法分别满足结合律
( a + b ) + c = a + ( b + c ) , ( a b ) c = a ( b c ) (a+b)+c = a+(b+c),(ab)c = a(bc) (a+b)+c=a+(b+c),(ab)c=a(bc)
-
基数的乘法对加法满足分配律
a ( b + c ) = a b + a c a(b+c) = ab + ac a(b+c)=ab+ac
-
幂运算指数性质成立
- a b + c = a b a c a^{b+c} = a^b a^c ab+c=abac
- ( a b ) c = a b c (a^b)^c = a^{bc} (ab)c=abc
- ( a b ) c = a c b c (ab)^c = a^cb^c (ab)c=acbc
可以看到基本都满足普通非负整数计算规则,但对于无穷基数的计算还要小心,例如它没有减法,这种.
*4.5 悖论、公理化集合论介绍
[选择性放弃更新这一节]
六、图的基本概念
6.1 图论的产生与发展史概述
图论产生过程有两个重要问题:
- 哥尼斯堡城七桥问题(对应欧拉路,一笔画问题)
- 四色定理(对应图染色问题,任一地图可被染四色)
6.2 基本定义
设V是一个非空集合,V的一切二元子集之集记作 P 2 ( V ) P_2(V) P2(V),换言之:
P 2 ( V ) = { A ∣ A ⊆ V 且 ∣ A ∣ = 2 } P_2(V) = \{A|A\subseteq V且|A|=2\} P2(V)={A∣A⊆V且∣A∣=2}
定义6.2.1 无向图
设V是一个非空有限集合,
E
⊆
P
2
(
V
)
E\subseteq P_2(V)
E⊆P2(V),二元组
(
V
,
E
)
(V,E)
(V,E)称为一个无向图.B中元素为无向图的顶点,V为顶点集,E称为边集,E的元素称为图的边.如果
{
u
,
v
}
∈
E
,
u
,
v
∈
V
\{u,v\} \in E,u,v\in V
{u,v}∈E,u,v∈V,则称u与v邻接.
以V为顶点集,E为边集的无向图
(
V
,
E
)
(V,E)
(V,E)常用一个字母G来代替,即G=(V,E).如果
∣
V
∣
=
p
,
∣
E
∣
=
q
|V|=p,|E|=q
∣V∣=p,∣E∣=q则称G为一个
(
p
,
q
)
(p,q)
(p,q)图.即G是一个具有p个顶点,q个边的图.(1,0)图称为平凡图.
以后常用u,v,w为顶点命名,x,y,z为边命名.如果x={u,v},则称x为这条边的名字,u和v称为边x的断电,这是还说顶点u,v与边x相互关联,还说x是连接节点u和v的边,且记为x=uv或x=vu.若x,y是两条边,并且只有一个公共端点,则
∣
x
∩
y
∣
=
1
|x\cap y|=1
∣x∩y∣=1,则称边x与y邻接.
注意:
- G是一个V上的反自反且对称的二元关系E的系统.
- 图的图解:每个点旁边写上名,然后边连线.这时得到的线的交点不是图的顶点.不过图解一般也称为图.
- 我们从现在开始研究的都是无向图。
几种特殊的图:
- 带环图.联结一个顶点和它自身的边称为环,有环的图叫带环图.
- 多重图.无向图定义中,两个点最多一条边联结,如果多于一条边,则称该图为多重图.这些边称为多重边.
- 伪图.允许有环和多重边存在的图称为伪图.
- 完全图.G为无向图,若G中任何两个顶点间都有一个边,则称G为完全图,n个顶点的完全图记作 K n K_n Kn.
定义6.2.2 零图
设G=(V,E)为无向图,如果 E = ∅ E=\empty E=∅,则称G为零图.零图是一个没有边的图,但它确实是一个无向图.
定义6.2.3 有向图
设V是一个非空有限集,
A
⊆
(
V
×
V
)
∖
{
(
u
,
u
)
∣
u
∈
V
}
A\subseteq (V\times V)\setminus \{(u,u)|u\in V\}
A⊆(V×V)∖{(u,u)∣u∈V}.二元组D=(V,A)成为一个有向图.V中的元素称为D的顶点,A中元素(u,v)称为D的从u到v的弧或有向边.
对称弧:如x=(u,v)且y=(v,u)均为A的弧,则称x与y为一对对称弧.
定义6.2.4 定向图
不含对称弧的有向图称为定向图.
对应无向图的一些定义:
- 环.一个从自己到自己的边称为环.
- 多重弧.两个顶点u,v之间有很多个从u到v的有向弧,则称他们为多重弧.
- 带环有向图.允许有环存在的有向图称为带环有向图.
- 多重有向图.允许有多重弧存在的有向图,称为多重有向图.
- 伪有向图.允许环和多重弧存在的有向图称为伪有向图.
定义6.2.5 子图
点集是原点集非空子集,边集是原边集子集的图.
设G=(V,E)是一个图,图
H
=
(
V
1
,
E
1
)
H=(V_1,E_1)
H=(V1,E1)称为G的一个子图,其中
V
1
⊆
V
,
E
1
⊆
E
V_1 \subseteq V,E_1\subseteq E
V1⊆V,E1⊆E且
V
1
V_1
V1非空.
定义6.2.6 生成子图
点集是原点集,边集是原边集子集的图.
设G=(V,E)是一个图,图
H
=
(
V
,
F
)
,
F
⊆
E
H=(V,F),F\subseteq E
H=(V,F),F⊆E是图G的生成子图.
真子图,极大子图
设
G
1
,
G
2
G_1,G_2
G1,G2是G的两个子图.如果
G
1
≠
G
G_1\neq G
G1=G则称
G
1
G_1
G1是G的真子图.如果
G
1
G_1
G1是
G
2
G_2
G2的子图,则说
G
2
G_2
G2包含
G
1
G_1
G1.
设G的子图H具有某种性质,若G中不存在 1.与H不同的 2.具有此性质 3.且包含H的 4.真子图 ,则称H是具有此性质的极大子图.
定义6.2.7 导出子图
设S是G的顶点集V的非空子集,则称G的以S为日顶点集的极大子图称为由S导出的子图,记作
⟨
S
⟩
=
(
S
,
P
2
(
S
)
∩
E
)
\langle S \rangle = (S,P_2(S)\cap E)
⟨S⟩=(S,P2(S)∩E).
于是,S的两个顶点在
⟨
S
⟩
\langle S \rangle
⟨S⟩中邻接,当且仅当其在G中邻接.
从图解上看,由 V ∖ v V\setminus v V∖v导出的子图是删除v和与v邻接的所有边,记作G-v.类似的我们可以定义G-x(生成子图,不删除点).如果u,v是G中不邻接两个顶点,图 ( V , E ∪ { u , v } (V,E\cup \{u,v\} (V,E∪{u,v}简记成G+uv.
定义6.2.8 图的同构
设G=(V,E),H=(U,F)是两个无向图.如果存在一个一一对应 f : V → U f:V\rightarrow U f:V→U使得 u v ∈ E ⇔ f ( u ) f ( v ) ∈ F uv\in E\Leftrightarrow f(u)f(v) \in F uv∈E⇔f(u)f(v)∈F,则称G与H同构,记作 G ≅ H G\cong H G≅H.
乌拉姆猜想
设G=(V,E),H=(U,F)是两个图, V = { v 1 , v 2 , … , v p } , U = { u 1 , u 2 , … , u p } V=\{v_1,v_2,\dots,v_p\},U=\{u_1,u_2,\dots,u_p\} V={v1,v2,…,vp},U={u1,u2,…,up}其中p>2.如果对于每个i都有 G − v i ≅ H − u i G-v_i \cong H-u_i G−vi≅H−ui,则 G ≅ H G\cong H G≅H.
定义6.2.9 顶点的度
设v是G的一个顶点,G中与v关联的边的数目称为顶点v的度.记作 deg v \deg v degv.
定理6.2.1 欧拉定理,顶点度
G是一个(p,q)图,则G中各顶点度的和等于2q. ∑ deg v = 2 q \sum \deg v = 2q ∑degv=2q.
推论6.2.1 奇度点偶数个
任一图中,度为奇数的顶点的数目必定为偶数.
最大度,最小度
引入记号表示图中最大,最小度:
δ
(
G
)
=
min
v
∈
V
{
deg
v
}
Δ
(
G
)
=
max
v
∈
V
{
deg
v
}
\delta(G) = \displaystyle \min_{v\in V}\{\deg v\}\\ \Delta(G) = \displaystyle \max_{v\in V}\{\deg v\}
δ(G)=v∈Vmin{degv}Δ(G)=v∈Vmax{degv}
定义6.2.10 r度正则图
图G称为r度正则图,如果 δ ( G ) = Δ ( G ) = r \delta(G) = \Delta(G) = r δ(G)=Δ(G)=r,即G的每个顶点的度都等于r.3度正则图也叫三次图.一个具有p个顶点的p-1度正则图称为p个顶点的完全图,记作 K p K_p Kp.
推论6.2.2 三次图
每个三次图都有偶数个顶点.
孤立顶点
度为0的点称为孤立顶点.0度正则图就是零图.
6.3 路、圈、连通图
图的最基本的性质是它是否联通,直观上就是它能不能(裂开)分成不相连接的几部分。
定义6.3.1 通道
设G是一个图,G的一条通道是G的顶点和边的一个交错序列。
v
0
,
x
1
,
v
1
,
x
2
,
…
,
v
n
−
1
,
x
n
,
v
n
;
x
i
=
v
i
−
1
v
i
v_0,x_1,v_1,x_2,\dots,v_{n-1},x_n,v_n;x_i = v_{i-1}v_{i}
v0,x1,v1,x2,…,vn−1,xn,vn;xi=vi−1vi
n称为通道的长。这样一个通道常称为
v
0
−
v
n
v_0-v_n
v0−vn通道,简记作
v
0
v
1
…
v
n
v_0v_1\dots v_n
v0v1…vn。当
v
0
=
v
n
v_0 = v_n
v0=vn时,称为闭通道。
注意:通道上点和边都可以重复出现,计算通道长的时候,重复的边按重复的次数算。
定义6.3.2 迹、闭迹
- 如果图中一条通道上各边互不相同,则称此通道为图的迹。
- 如果一条闭通道上各边互不相同,则称此通道为伍德闭迹。
定义6.3.3 路、闭路(圈)
- 如果一个通道上各顶点互不相同,则称该通道为路。
- 如果一条闭通道上各顶点互不相同,则称为圈或回路。
定义6.3.4 连通图
设G时图,若G中任两个不同顶点间至少有一条路联结,则称G是一个连通图。
定义6.3.5 支
一个不连通的图可以被分为互不相连的及部分,每个部分都是连通的,称为一个连通分支,或支。
图G的极大连通子图称为G的一个支。一个图可以有很多支。
定理6.3.1 以连通构建等价关系
设G是一个图,在V上定义二元关系
≅
\cong
≅如下:
∀
u
,
v
∈
V
,
u
≅
v
,
if
u
与
v
之
间
有
一
条
路
\forall u,v\in V,u\cong v,{\text{if}}\ u与v之间有一条路
∀u,v∈V,u≅v,if u与v之间有一条路
则
≅
\cong
≅是V上的等价关系,G的支就是关于
≅
\cong
≅的每个等价类的导出子图.
定理6.3.2 判定图连通的充分条件
设G是一个(p,q)图,对G任何两个不相邻顶点u,v始终有
deg
u
+
deg
v
≥
p
−
1
\deg u + \deg v \geq p-1
degu+degv≥p−1
则G是连通的.
[证明]假设图不是连通的,那么就至少有两个支,取两个不同支上的点,它们度之和最大时p-2.因此得证.
定理6.3.3 判定圈的充分条件(顶点度)
设G是至少有一个顶点不是孤立顶点的图,如果 ∀ v ∈ V , deg v = 2 k \forall v \in V,\deg v = 2k ∀v∈V,degv=2k,则G中一定有圈.
[证明]取一个最长路 P = v 1 v 2 v 3 … v n P=v_1v_2v_3\dots v_n P=v1v2v3…vn,由于 v 1 v_1 v1度大于2,则一定有两个点与它邻接,那么这两个点之中一定有一个对应在原序列中的 v i , i ≥ 3 v_i,i\geq 3 vi,i≥3,这样 v 1 v i v_1v_i v1vi就没被使用,然后我们构造 P ′ = v 1 v 2 … v i v 1 P' = v_1v_2\dots v_i v_1 P′=v1v2…viv1就是一个圈.
定理6.3.4 判定圈的充分条件(顶点路)
G中两个不同的顶点u,v之间有两个不同的路联结,则G中有圈.
[证明]取一个只在一条路上的边x(u,v),然后删去它,则uv之间存在一条路,然后把x加进去,就构成了圈.
6.4 补图、偶图
类似于正反关系,补图类似于补集的概念。有时转换研究其补图可能会更简单。
定义6.4.1 补图
设G=(V,E)是一个图,则图 G c = ( V , P 2 ( V ) ∖ E ) G^c=(V,P_2(V)\setminus E) Gc=(V,P2(V)∖E)称为G的补图.如果G与其补图同构,则称G为自补图.
定理6.4.1 6顶点图与三角形
三个顶点的完全图 K 3 K_3 K3称为三角形.
对任一有6个顶点的图G,G中或 G c G^c Gc中有一个三角形.
[证明]取一个v,则在G或 G c G^c Gc中一定有一个图满足与其邻接的三个顶点 v 1 , v 2 , v 3 v_1,v_2,v_3 v1,v2,v3,如果这三个中有两个邻接,那么就与v构成了三角形.如果两两不邻接,则在这个图的补图中这三个就构成了三角形.
拉姆齐问题/拉姆齐数
拉姆齐问题:任何六个人的团队中,存在三个互相认识的人或互相不认识的人.
拉姆齐数:求一个与两个数n,m有关的最小正整数r(m,n),使得任何有r(m,n)个顶点的图一定含有一个 K m K_m Km或 K n c K_n^c Knc.数r(m,n)称为拉姆齐数.
定义6.4.2 偶图
G=(V,E)为称为偶图,当且仅当其满足以下条件:
- V中有一个2-划分 { V 1 , V 2 } \{V_1,V_2\} {V1,V2},
- 使得G的任一条边的两个端点一个在 V 1 V_1 V1中,另一个在 V 2 V_2 V2中.
这个偶图有时记为 ( ( V 1 , V 2 ) , E ) ((V_1,V_2),E) ((V1,V2),E).如果 ∀ u ∈ V 1 , v ∈ V 2 \forall u\in V_1,v\in V_2 ∀u∈V1,v∈V2均有 u v ∈ E uv\in E uv∈E,则称这偶图为完全偶图,记为 K ( m , n ) 或 K m , n K(m,n) 或 K_{m,n} K(m,n)或Km,n,其中 ∣ V 1 ∣ = m , ∣ V 2 ∣ = n |V_1|=m,|V_2|=n ∣V1∣=m,∣V2∣=n.
定义6.4.3 最短路长度
设G是一个图,uv是G的顶点,联结uv的最短路长度称为uv之间的距离,并记为 d ( u , v ) d(u,v) d(u,v).如果u与v间在G中没有路,则定义 d ( u , v ) = ∞ d(u,v) = \infty d(u,v)=∞.
定理6.4.2 偶图充要条件
G为偶图的充分必要条件是它的所有圈都是偶数长.
定理6.4.3 图兰定理(无三角形图条件)
所有具有p个顶点而没有三角形的图中最多有 ⌊ p 2 / 4 ⌋ \lfloor p^2 / 4 \rfloor ⌊p2/4⌋条边.指下取整.
[证明]构造完全偶图.
6.5 欧拉图
迹:边不重复的通道
定义6.5.1 欧拉闭迹、欧拉图
包含图的所有顶点和所有边的闭迹称为欧拉闭迹,存在一条欧拉闭迹的图称为欧拉图。
定理6.5.1 欧拉图判定充要条件
图G是欧拉图当且仅当G是连通的且每个顶点的度都是偶数。
[证明]根据定理6.3.3不断构造、删除一个圈,最后因为这些圈有公共点,作为连接部分,把这些圈连接起来。
推论6.5.1 欧拉图等价命题
设G是一个连通图,以下命题等价:
- G是一个欧拉图
- G所有顶点的度都是偶数
- G的边集能划分成若干互相边不相交的圈。
定义6.5.2 欧拉迹
包含图的所有顶点和边的迹称为欧拉迹。欧拉迹不一定是欧拉闭迹。
推论6.5.2 欧拉迹判定条件
图G有一条非欧拉闭迹的欧拉迹,当且仅当G是连通的,且奇度顶点的个数刚好为两个。
定理6.5.2 n笔画问题
G是连通图,G有2n个奇度顶点, n ≥ 1 n \geq 1 n≥1,则G全部边可以排成n条开迹,而且至少有n条开迹。
6.6 哈密顿图
路:点不重复的通道
定义6.6.1 哈密顿图
G是一条生成路称为G的哈密顿路。所谓生成路就是包含所有顶点的路。G的一个包含所有顶点的圈称为G的一个哈密顿圈。具有哈密顿圈的图称为哈密顿图。
定理6.6.1 哈密顿图导出子图
G是哈密顿图,S是V的非空子集,则 ω ( G − S ) ≤ ∣ S ∣ \omega(G-S) \leq |S| ω(G−S)≤∣S∣.即导出子图的支数小于等于删除的点集的大小。
[证明]: ω ( G − S ) ≤ ω ( H − S ) , H 为 哈 密 顿 圈 \omega(G-S) \leq \omega(H-S),H为哈密顿圈 ω(G−S)≤ω(H−S),H为哈密顿圈。
定理6.6.2 迪拉克定理(哈密顿图判定充分条件)
G是一个 p , p ≥ 3 p,p\geq 3 p,p≥3顶点的图,如果 δ ( G ) ≥ p 2 \delta(G) \geq {p\over 2} δ(G)≥2p,则G是一个哈密顿图。
定理6.6.3 奥尔定理(迪拉克定理推广)
G是一个
p
,
p
≥
3
p,p\geq 3
p,p≥3顶点的图,如果对G任何两个不邻接顶点uv都有
deg
u
+
deg
v
≥
p
\deg u + \deg v \geq p
degu+degv≥p
则G是一个哈密顿图。
定理6.6.4 哈密顿路判定充分条件
G是一个p顶点图,如果G每一对不邻接顶点u和v均有
deg
u
+
deg
v
≥
p
−
1
\deg u + \deg v \geq p-1
degu+degv≥p−1
则此时G有哈密顿路。
6.7 *图的邻接矩阵
这个东西课件上都是打星号内容
[主要内容]
- a i j = { 1 , v i v j ∈ E 0 , v i v j ∉ E a_{ij} = \begin{cases}1,v_iv_j \in E\\0,v_iv_j \notin E\end{cases} aij={1,vivj∈E0,vivj∈/E.
- G顶点数是A的阶,G边数是A中1的个数的一半, deg v = ∑ i A v , i \deg v = \sum_i A_{v,i} degv=∑iAv,i.
- 两种编号下的邻接矩阵存在一个置换矩阵P,使得 A 1 = P A 2 P T A_1 = PA_2 P^T A1=PA2PT.
- 设G是(p,q)图,A是邻接矩阵,G中 u i , u j u_i,u_j ui,uj之间长度为l的通道的条数等于 A l A^l Al的第i行第j列的值。
- G是一个p顶点图,则 G 连 通 ⇔ ( A + I ) p − 1 ≥ 0 G连通\Leftrightarrow (A+I)^{p-1} \geq 0 G连通⇔(A+I)p−1≥0
- A的特征多项式
P
(
λ
)
=
∣
λ
I
−
A
∣
=
λ
p
+
C
1
λ
p
−
1
+
⋯
+
C
p
P(\lambda) = |\lambda I - A| = \lambda^p + C_1\lambda^{p-1} +\cdots + C_p
P(λ)=∣λI−A∣=λp+C1λp−1+⋯+Cp.中
- C 1 = 0 C_1=0 C1=0
- − C 2 -C_2 −C2是G的边数
- − C 3 -C_3 −C3是G中三角形个数的两倍
- G=(V,E)是p个顶点的k-正则图(所有点的度都是k),A是邻接矩阵.
- k是A的一个特征值
- 若G是连通的,则k的几何重数为1
- A的任何特征值 ∣ λ ∣ ≤ k |\lambda| \leq k ∣λ∣≤k
- 常用的存图方式为邻接表.它分顶点域和链域.
6.8 *带权图与最短路问题
这个东西课件上都是打星号内容
[主要内容]
- G=(V,E)是一个图,f是V到S的一个映射,称 ( V , E , f ) (V,E,f) (V,E,f)是一个顶点带权图,仍记G为 G = ( V , E , f ) , ∀ v ∈ V , f ( v ) 是 v 的 权 G=(V,E,f),\forall v \in V,f(v)是v的权 G=(V,E,f),∀v∈V,f(v)是v的权.类似的g是E到S的映射,则 ( V , E , g ) (V,E,g) (V,E,g)是边带权图,其他定义同上.
- 最短路问题,针对边带权图,g是从E到非负实数集R的映射.H是G的一个子图, g ( H ) g(H) g(H)记作H中所有边权之和.
- 求解过程:Dijkstra算法.
七、树及割集
7.1 树及其性质
定义7.1.1 (无向)树、森林
连通且无圈的无向图称为无向树,简称树。一个没有圈的无向图称为无向森林,简称森林。注意,图论中没有空图,因此也没有空树。
森林的每个支都是树,森林是若干树组成的图。
只有一个顶点的树称为平凡树,与图中的平凡图定义相同。
定理7.1.1 关于树的等价命题
G=(V,E)是一个(p,q)图,以下各命题等价。
- G是树
- G任一两个顶点之间有唯一的一条路联结
- G是连通的且p=q+1
- G中无圈且p=q+1
- G中无圈且G中任何两个不邻接顶点之间加一条边得到一个有唯一圈的图
- G是连通的,并且若 p ≥ 3 p\geq 3 p≥3,则G不是 K p K_p Kp.又若G的任两个不邻接的顶点之间加一条边,则得到一个恰好有唯一一个圈的图.
推论7.1.1 非平凡树顶点度
任一非平凡树中至少又两个度为1的顶点.
定义7.1.2 极小连通图
若去掉G中任意一边之后得到的都是不连通的图,则连通图G称为是极小连通图.
推论7.1.2 树与极小连通图
图G是树当且仅当G是极小连通图.
定义7.1.3 偏心率、半径
设G=(V,E)是连通图, v ∈ V , e ( v ) = max u ∈ V { d ( v , u ) } v\in V,e(v) = \max_{u\in V}\{d(v,u)\} v∈V,e(v)=maxu∈V{d(v,u)},称为v在G中的偏心率。数 r ( G ) = min v ∈ V { e ( v ) } r(G) = \min_{v\in V}\{e(v)\} r(G)=minv∈V{e(v)}称为G的半径。满足 e ( v ) = r ( G ) e(v)=r(G) e(v)=r(G)的点v称为G的中心点。G的所有中心点组成的集合称为G的中心,记作 C ( G ) C(G) C(G)。
定理7.1.2 树的中心
每颗树的中心或含有一个顶点,或者含有两个邻接的顶点。
[证明]:G删去所有度为1的点得到 G ′ G' G′,新图的所有点的偏心率都减少了1,因此图的中心不变。依次删除直到产生 K 1 , K 2 K_1,K_2 K1,K2,此时便得到结论。
7.2 生成树
定义7.2.1 生成树
G是一个图,T是G的一个生成图(包含所有顶点),如果T是树,则称T是G的生成树。显然:有生成树必连通。
定理7.2.1 连通与有生成树
G有生成树的充要条件是G连通。证明方法:破圈法
推论7.2.1 连通图点边关系
G是一个(p,q)图,则 q ≥ p − 1 q \geq p-1 q≥p−1。
定义7.2.2 生成森林
G是一个图,F是G的生成子图,若F是一个森林,则F称为G的一个生成森林。
显然:每个图必然会有生成森林。
定理7.2.2 完全图生成树
K p K_p Kp有 p p − 2 p^{p-2} pp−2个生成树, p ≥ 2 p\geq 2 p≥2。此定理证明涉及到树的唯一表示
树的唯一表示
设V是一个有序集合,T是一个树, s 1 s_1 s1是T中第一个度为1的顶点,与 s 1 s_1 s1邻接的点记作 t 1 t_1 t1。现在从T中去除 s 1 s_1 s1,剩下的图继续做该操作得到 s 2 , t 2 s_2,t_2 s2,t2,持续该操作直到图上仅剩两个顶点。这是唯一确定了一个 p − 2 p-2 p−2元组 ( t 1 , t 2 , t 3 , … , t p − 2 ) (t_1,t_2,t_3,\dots,t_{p-2}) (t1,t2,t3,…,tp−2),这就是一个树的唯一表示。
定理7.2.3 两个生成树之间的变换
G=(V,E)是一个生成树, T 1 , T 2 T_1,T_2 T1,T2是两个不同的生成树,如果 e 1 ∈ E 1 ⇒ e 2 ∈ E 2 e_1\in E_1\Rightarrow e_2\in E_2 e1∈E1⇒e2∈E2,满足 ( T 1 − e 1 ) + e 2 (T_1 - e_1) + e_2 (T1−e1)+e2是G的一个生成树。
[证明]:去掉 e 1 e_1 e1后分成了两个部分,然后找一个 e 2 e_2 e2连接这两部分即可.
定义7.2.3 生成树距离
设 T 1 , T 2 T_1,T_2 T1,T2是G的生成树,是 T 1 T_1 T1的边,但不是 T 2 T_2 T2的边的条数k称为 T 1 与 T 2 T_1与T_2 T1与T2的距离,记作 d ( T 1 , T 2 ) = k d(T_1,T_2) = k d(T1,T2)=k。性质: d ( T 1 , T 1 ) = 0 , d ( T i , T j ) ≥ 0 , d ( T 1 , T 2 ) = d ( T 2 , T 1 ) d(T_1,T_1) = 0,d(T_i,T_j) \geq 0,d(T_1,T_2) = d(T_2,T_1) d(T1,T1)=0,d(Ti,Tj)≥0,d(T1,T2)=d(T2,T1). d ( T 1 , T 2 ) ≤ d ( T 1 , T 3 ) + d ( T 3 , T 2 ) d(T_1,T_2) \leq d(T_1,T_3) + d(T_3,T_2) d(T1,T2)≤d(T1,T3)+d(T3,T2).
基本变换
若
d
(
T
1
,
T
2
)
>
0
d(T_1,T_2)>0
d(T1,T2)>0,则
T
1
T_1
T1中有一条边
e
1
e_1
e1不在
T
2
T_2
T2中,同理
T
2
T_2
T2中也有一个
e
2
e_2
e2.于是
T
2
=
(
T
1
−
e
1
)
+
e
2
T_2 = (T_1 - e_1) + e_2
T2=(T1−e1)+e2
称为从
T
1
T_1
T1到
T
2
T_2
T2的一个基本(树)变换.
定理7.2.4 距离与基本变换
设 T 0 , T T_0,T T0,T是距离为k的G的两个生成树,则经过k次基本树变换就可以满足两生成树之间的转换.
最小生成树问题
这个问题需要研究边带权图,求解权最小的生成树.接下来的问题都是为解决这个最小生成树问题而展开的.
定义7.2.4 弦(基本圈)
设T是连通图G的生成树,G的不是T的边称为T的弦.
如果e是T的一条弦,则 T + e T+e T+e有唯一的圈,这个圈被称为是基本圈.
定理7.2.5 Kruskal克鲁斯卡尔算法原理
前置: G = ( V , E , ω ) , ω ( x ) > 0 , ∀ x ∈ E G=(V,E,\omega),\omega(x) > 0,\forall x\in E G=(V,E,ω),ω(x)>0,∀x∈E是一个边带权图.T是一个最小生成树,e是T的一条弦.加入e后构成的圈的点集为U.则有 ω ( u ) ≤ ω ( e ) , ∀ u ∈ U \omega(u) \leq \omega(e),\forall u \in U ω(u)≤ω(e),∀u∈U.
G = ( V , E , ω ) , ω ( x ) > 0 , ∀ x ∈ E G=(V,E,\omega),\omega(x) > 0,\forall x\in E G=(V,E,ω),ω(x)>0,∀x∈E是一个边带权图. { ( V 1 , E 1 ) , … , ( V k , E k ) } \{(V_1,E_1),\dots,(V_k,E_k)\} {(V1,E1),…,(Vk,Ek)}是G的生成森林, k ≥ 1 , F = ∪ E i k\geq 1,F=\cup E_i k≥1,F=∪Ei.如果e是 E ∖ F E\setminus F E∖F中权值最小的边,且连接两个树.则存在一个包含 F ∪ { e } F\cup \{e\} F∪{e}的生成树T,使得T的权不大于包含F的生成树的权.[证明]:反证法.
Kruskal算法
输入 G = ( V , E , w ) G=(V,E,w) G=(V,E,w),输出 T = ( U , F ) T = (U,F) T=(U,F).
开始;
U 空集;
F 空集;
将E按照w的大小关系排列称为一个序列Q;
对于每个顶点v,将其加到U中;
当|U| > 1时,做:
开始;
从Q中选权值最小的边{u,v};
从Q中删除这条边;
如果u和v分别在U的两个子集U1,U2中:
开始;
用U1并U2代替U1和U2;
把{u,v}加到F中;
结束;
结束;
结束;
定理7.2.6 Prim算法原理
G = ( V , E , ω ) , ω ( x ) > 0 , ∀ x ∈ E G=(V,E,\omega),\omega(x) > 0,\forall x\in E G=(V,E,ω),ω(x)>0,∀x∈E是一个边带权图.U是V的一个真子集.取满足以下性质的一条边 { u , v } \{u,v\} {u,v}
- u ∈ U , v ∉ U u\in U,v\notin U u∈U,v∈/U
- ∀ u , v 满 足 条 件 1 , w ( u , v ) 是 最 小 的 \forall u,v满足条件1,w(u,v)是最小的 ∀u,v满足条件1,w(u,v)是最小的
则G中一定存在一个最小生成树,它包含上述的这条边.
7.3 割点、桥和割集
定义7.3.1 割点
设v是图G的一个顶点,若G-v的支数大于G的支数,则称v是G的一个割点。
定义7.3.2 桥
设x是G的一条边,若G-x的支数大于G的支数,则称x是G的一个割边(桥)。
定理7.3.1 割点之间的等价命题
- v是G的一个割点
- 存在与v不同的两个顶点u,w,使得它们之间每条路都经过v
- 集合 V ∖ { v } V\setminus \{v\} V∖{v}有一个二划分 { U , W } \{U,W\} {U,W},使得这两个集合之间任何点的路都经过v。
定理7.3.2 非平凡连通图割点
每个非平凡(不是(1,0)图)的连通图至少有两个顶点不是割点。证明用生成树的1度顶点来证明。
定理7.3.3 割边之间的等价命题
- x是G的桥
- x不在G的任一圈上
- 存在G的两不同顶点uv,x在它们之间所有路上
- 集合 V ∖ { v } V\setminus \{v\} V∖{v}有一个二划分 { U , W } \{U,W\} {U,W},使得两集合之间任何点的路都经过x
定义7.3.3 割集
设 G = ( V , E ) G=(V,E) G=(V,E)是图, S ⊆ E S\subseteq E S⊆E.如果 G − S G-S G−S的支数大于G的支数,而去掉S的任一真子集的边得到的图不满足该性质,则S是G的一个割集.
定理7.3.4 割集与支
设S是G的割集,则G-S恰好有两个支.
推论7.3.1 割集与支的变化
G是一个有k个支的图,S是G的割集,则G-S恰好有k+1个支。
推论7.3.2 不连通图的割集
不连通图G的每个割集一定是G某个支的割集。
定理7.3.5 生成树与割集
设T是连通图G的任一生成树,G的任何一个割集都一定包含有T中的边。
定理7.3.6 圈与割集
连通图G的每个圈与G的任一割集有偶数条公共边。
定理7.3.7 基本圈与割集
设T是连通图G的一个生成树,e是T的一条弦,C是由T+e确定的一个基本圈。则e包含在“C上除e外的每条边确定的T的基本割集”中,但不包含在其他割集中。
定理7.3.8 生成树与割集
[相对树的基本割集系统]T是G的一个生成树,x是T里面的边。T-x由两个支,于是V被分成两部分。由这两部分确定的割集称为由边x确定的基本割集。
T的每条边确定的割集称为G的相对T的基本割集。所有这些割集之集称为G的相对T的基本割集系统。
[基本割集定理]T是G的生成树,x是T的边,S为由x确定的相对T的一个基本割集,则x必在由S的每条弦确定的基本圈上,而不再任一基本圈上。
八、连通度与匹配
8.1 顶点连通度和边连通度
定义8.1.1 顶点连通度(连通度)
设G=(V,E)是一个无向图。V的子集S,如果G-S是不连通的,则S称为分离图G。图G的顶点连通度 κ ( G ) \kappa(G) κ(G)是为了产生一个不连通图或平凡图(平凡图针对的目标是完全图,完全图只能删除到 K 1 K_1 K1才行)所需要从G中去掉的最少顶点数目。
顶点连通度又被称为图的连通度。
定义8.1.2 边连通度
图G的边连通度 λ ( G ) \lambda(G) λ(G)是为了从G产生不连通或平凡图所需从G中去掉的最小边数。
定理8.1.1 连通度与顶点度关系
κ ( G ) ≤ λ ( G ) ≤ δ ( G ) , 顶 点 连 通 度 ≤ 边 连 通 度 ≤ 最 小 度 \kappa(G) \leq \lambda(G) \leq \delta(G),顶点连通度\leq 边连通度\leq 最小度 κ(G)≤λ(G)≤δ(G),顶点连通度≤边连通度≤最小度
定理8.1.2 构造满足各度的图
对于任何整数
0
<
a
≤
b
≤
c
0<a\leq b\leq c
0<a≤b≤c存在一个图G使得
κ
(
G
)
=
a
,
λ
(
G
)
=
b
,
δ
(
G
)
=
c
\kappa(G) = a,\lambda(G)=b,\delta(G)=c
κ(G)=a,λ(G)=b,δ(G)=c
[构造方法]:
- a = b = c a=b=c a=b=c,构造 G = K a + 1 G=K_{a+1} G=Ka+1.
- a = b < c a = b < c a=b<c,构造:两个 K c + 1 K_{c+1} Kc+1,中间用a条互不相交的边连接.
- a < b = c a < b = c a<b=c,构造:两个 K b − a + 1 , 叫 G 1 , G 2 K_{b-a+1},叫G_1,G_2 Kb−a+1,叫G1,G2,一个 K a K_a Ka,对 K a K_a Ka的每个点与 G 1 , G 2 G_1,G_2 G1,G2每个点都连一条边.
- a < b < c a<b<c a<b<c,构造:两个 K c + 1 , 分 别 叫 G 1 , G 2 K_{c+1},分别叫G_1,G_2 Kc+1,分别叫G1,G2,从 G 1 G_1 G1选a个点,第一个点向 G 2 G_2 G2连 b − a + 1 b-a+1 b−a+1条另一端点不同的边;剩下的 a − 1 a-1 a−1个点向 G 2 G_2 G2连接 a − 1 a-1 a−1条互不相交的边.
引理8.1.1 边连通度与点集划分
设 G = ( V , E ) G=(V,E) G=(V,E),且 λ ( G ) > 0 \lambda(G) > 0 λ(G)>0.则存在V的二划分 A , V ∖ A A,V\setminus A A,V∖A,使得G中联结A与 V ∖ A V\setminus A V∖A中一个顶点的边的总数为 λ ( G ) \lambda(G) λ(G).
定理8.1.3 判定边连通度与最小度相等
G=(V,E),有p个顶点且 δ ( G ) ≥ ⌊ p 2 ⌋ ( [ p 2 ] ) \delta(G) \geq \lfloor {p\over 2}\rfloor([{p\over 2}]) δ(G)≥⌊2p⌋([2p]),则 λ ( G ) = δ ( G ) \lambda(G) = \delta(G) λ(G)=δ(G)。
定理8.1.4 点连通度与图的大小
G=(p,q)=(V,E)。则:
- if q < p − 1 , κ ( G ) = 0 {\text{if}}\ q < p-1,\kappa(G) = 0 if q<p−1,κ(G)=0
- if q ≥ p − 1 , κ ( G ) ≤ ⌊ 2 q p ⌋ \text{if}\ q \geq p-1,\kappa(G)\leq \lfloor {2q\over p}\rfloor if q≥p−1,κ(G)≤⌊p2q⌋
定义8.1.3 n-顶点连通、n-边连通
G是一个图,如果 κ ( G ) ≥ n \kappa(G)\geq n κ(G)≥n,则称G是n-顶点连通的,简称n-连通;如果 λ ( G ) ≥ n \lambda(G) \geq n λ(G)≥n,则称G是n-边连通的。
注意:这个n可以小于你的顶点连通度、边连通度。
定理8.1.5 2-顶点连通判定条件
G是一个p顶点的图,且 p ≥ 3 p\geq 3 p≥3。则G是2-连通的,当且仅当G的任两个不同顶点都在G的同一个圈上。
定理8.1.6 n-边连通判定条件
设G是一个图,则其n-边连通的充要条件是:不存在V的真子集A,使得G中联结A和 V ∖ A V\setminus A V∖A的边的总数小于n。
8.2 *门格尔定理
[选择性断更这一节]
8.3 匹配、霍尔原理
这个东西课件上都是打星号内容
[主要内容]
-
两条不邻接的边称为是相互独立的。
-
E的子集Y,如果Y中边两两独立,则Y是G的一个匹配。
-
Y是最大匹配等价于任一匹配 Y ′ , ∣ Y ′ ∣ ≤ ∣ Y ∣ Y',|Y'| \leq |Y| Y′,∣Y′∣≤∣Y∣。
-
偶图的完全匹配是指一个 Y ⊆ E Y\subseteq E Y⊆E,且 ∀ x ∈ Y \forall x\in Y ∀x∈Y,都是联结偶图两个子集的边.并且 ∣ Y ∣ = min { ∣ V 1 ∣ , ∣ V 2 ∣ } |Y| = \min\{|V_1|,|V_2|\} ∣Y∣=min{∣V1∣,∣V2∣}.称Y是偶图G的完全匹配.
-
m个姑娘,n个小伙子.m个姑娘都能嫁给自己认识的小伙子,这个问题有解的充要条件是对于任意 k ∈ [ 1 , m ] k\in [1,m] k∈[1,m]任意k个姑娘认识的小伙子总数不小于k.
-
霍尔原理.设X是一个有限集,系统 T : A 1 , A 2 , A 3 , … , A n T:A_1,A_2,A_3,\dots,A_n T:A1,A2,A3,…,An是X的一些子集构成的,则T有相异代表系的充要条件是对于 ∀ I ⊆ { 1 , 2 , 3 , 4 , … , n } \forall I \subseteq \{1,2,3,4,\dots,n\} ∀I⊆{1,2,3,4,…,n}都有 ∣ ∪ i ∈ I A i ∣ ≥ ∣ I ∣ , ( H a l l 条 件 ) |\cup_{i\in I}A_i| \geq |I|,(Hall条件) ∣∪i∈IAi∣≥∣I∣,(Hall条件).这个可以看作是上面问题的形式化拓展.
-
G是一个偶图, ∣ V 1 ∣ ≤ ∣ V 2 ∣ |V_1|\leq |V_2| ∣V1∣≤∣V2∣,令 ϕ : V 1 → 2 V 2 \phi:V_1 \rightarrow 2^{V_2} ϕ:V1→2V2,且对应关系如下 v i ∈ V 1 , u i ∈ V 2 v_i\in V_1,u_i \in V_2 vi∈V1,ui∈V2:
ϕ ( v i ) = { u j ∣ u j ∈ V 2 且 v i u j ∈ E } \phi(v_i) = \{u_j|u_j\in V_2且v_iu_j\in E\} ϕ(vi)={uj∣uj∈V2且viuj∈E} -
G = ( V 1 ∪ V 2 , E ) G = (V_1\cup V_2,E) G=(V1∪V2,E)为偶图, ∣ V 1 ∣ ≤ ∣ V 2 ∣ |V_1| \leq |V_2| ∣V1∣≤∣V2∣,则G有完全匹配的充要条件是对于 V 1 V_1 V1的任一子集S, ∣ ϕ ( S ) ∣ ≥ ∣ S ∣ |\phi(S)| \geq |S| ∣ϕ(S)∣≥∣S∣,其中 ϕ ( S ) = { u ∣ u ∈ V 2 , 且 ∃ v ∈ S , 使 得 v u ∈ E } \phi(S)=\{u|u\in V_2,且\exists v \in S,使得vu\in E\} ϕ(S)={u∣u∈V2,且∃v∈S,使得vu∈E}.
-
Y是G的一个匹配,如果 2 ∣ Y ∣ = ∣ V ∣ 2|Y| = |V| 2∣Y∣=∣V∣,则称Y是G的一个完美匹配.
-
r-正则偶图G一定有一个完美匹配,其中 r ≥ 1 r\geq 1 r≥1.
-
设 T : A 1 , A 2 , … , A n T:A_1,A_2,\dots,A_n T:A1,A2,…,An为有限集X的子集构成的系统,系统T的集系统S是T的子序列构成的系统.如果S有相异代表系,则称子系统S的相异代表系为系统T的部分相异代表系.
-
设 T : A 1 , A 2 , … , A n T:A_1,A_2,\dots,A_n T:A1,A2,…,An为有限集X的子集构成的系统,则T有一个有t个不同元素组成的T的部分相异代表系的充要条件是 ∀ A ⊆ { 1 , 2 , … , n } \forall A \subseteq \{1,2,\dots,n\} ∀A⊆{1,2,…,n}使得 ∣ ∪ i ∈ A A i ∣ ≥ ∣ A ∣ − ( n − t ) |\cup_{i\in A}A_i| \geq |A| - (n-t) ∣∪i∈AAi∣≥∣A∣−(n−t).
-
设 T : A 1 , A 2 , … , A n T:A_1,A_2,\dots,A_n T:A1,A2,…,An为有限集X的子集构成的系统,则T的部分相异代表系所含元素的最大值t等于
min B ⊆ { 1 , 2 , … , n } { ∣ ∪ i ∈ B A i ∣ + ( n − ∣ A ∣ ) } \min_{B\subseteq \{1,2,\dots,n\}}\{|\cup_{i\in B}A_i| + (n-|A|)\} B⊆{1,2,…,n}min{∣∪i∈BAi∣+(n−∣A∣)} -
G是一个偶图且 ∣ V 1 ∣ ≤ ∣ V 2 ∣ |V_1|\leq |V_2| ∣V1∣≤∣V2∣,G的最大匹配中边数记作M(G).则
M ( G ) = min A ⊆ V 1 { ∣ ∪ v ∈ A ϕ ( A ) ∣ + ( ∣ V 1 ∣ − ∣ A ∣ ) } = min A ⊆ V 1 { ∣ A ∣ + ∣ ϕ ( V 1 ∖ A ) ∣ } \begin{aligned} M(G) = &\min_{A\subseteq V_1}\{|\cup_{v\in A}\phi(A)|+(|V_1| - |A|)\}\\ = & \min_{A\subseteq V_1}\{|A| + |\phi(V_1\setminus A)|\} \end{aligned} M(G)==A⊆V1min{∣∪v∈Aϕ(A)∣+(∣V1∣−∣A∣)}A⊆V1min{∣A∣+∣ϕ(V1∖A)∣} -
由门格尔定理能推出霍尔定理
九、平面图与图的着色
9.1 平面图及其欧拉公式
平面图:其图解可以画在一个平面上,而且存在一种画法使得仅可能在顶点相交,边内部都不相交,就称为平面图。
定义9.1.1 可平面图
G称为被嵌入平(曲)面S内,如果G的图解已经画在S上,而且任何两条边除端点外都不相交。已嵌入平面内的图称为平面图。如果一个图可以嵌入平面,则称此图是可平面的。
定义9.1.2 内外部面
平面图G把平面分成了若干个区域,这些区域都是单连通的(可以收缩到一个点),称之为G的面。其中无界的连通区域称为G的外部面,其余单连通区域称为G的内部面。
一个平面图可以没有内部面,但不能没有外部面。
定理9.1.1 欧拉公式
如果有p个顶点q条边的平面连通图G,有f个面,则
p
−
q
+
f
=
2
p-q+f=2
p−q+f=2
证明:使用归纳法,对面的个数进行归纳。
- 去掉一个边x,打通了两个面,此时G-x=(p,q-1)
- p - (q-1) + (f-1) = 2由归纳假设可知正确
- p - q + f = 2因此得到这个也是正确的
定理9.1.1’ 非连通图欧拉公式
如果有p个顶点q条边的平面图G,有f个面,k个支,则
p
−
q
+
f
=
k
+
1
p-q+f=k + 1
p−q+f=k+1
证明:对每个支列式子,然后加起来。
推论9.1.1 面的边缘长相等
如果平面连通图G由p个顶点q条边,而且每个面都是由长度为n的圈围成的,则
p
−
q
+
f
=
2
2
q
=
n
f
⇒
f
=
2
q
n
⇒
q
=
n
(
p
−
2
)
/
(
n
−
2
)
p - q + f = 2\\ 2q = nf \Rightarrow f = {2q\over n} \Rightarrow \\ q = n(p-2)/(n-2)
p−q+f=22q=nf⇒f=n2q⇒q=n(p−2)/(n−2)
最大可平面图
最大可平面图是一个可平面图。对此可平面图中不能再加入边而不破坏图的可平面性。
简称:加了新边就一定不是可平面图。
推论9.1.2 三角形最大可平面图
G=(p,q)是最大可平面图,则G的每个面都是三角形,且 q = 3 p − 6 q=3p-6 q=3p−6.
推论9.1.3 面长均为4
G是一个可平面连通图,G的每个面都是一个长为4的圈围成的,G=(p,q),则 q = 2 p − 4 q=2p-4 q=2p−4
推论9.1.4 可平面图边数
若G是任一有p顶点q个边的可平面图 p ≥ 3 p \geq 3 p≥3,则 q ≤ 3 p − 6 q \leq 3p - 6 q≤3p−6;若G是2-(顶点)连通图且G中没有三角形,则 q ≤ 2 p − 4 q \leq 2p - 4 q≤2p−4.
推论9.1.5 K5和K3,3
K 5 , K 3 , 3 K_5,K_{3,3} K5,K3,3都不是可平面图
推论9.1.6 顶点度最小值
每个平面图G的顶点度的最小值不超过5,即 δ ( G ) ≤ 5 \delta(G) \leq 5 δ(G)≤5.
9.2 非哈密顿平面图
前言:1968年,Grinberg发现平面图是哈密顿图的一个必要条件.
定理9.2.1 平面哈密顿图
G = ( V , E ) = ( p , q ) G=(V,E)=(p,q) G=(V,E)=(p,q)是一个平面哈密顿图(字面意思,平面图+哈密顿图),C是G的哈密顿圈.令 f i f_i fi为C内部由i条边围成的面的个数, g i g_i gi是C的外部由i条边围成的面的个数.
- 1 f 3 + 2 f 4 + ⋯ = ∑ i = 1 p ( i − 2 ) f p = p − 2 1f_3 + 2f_4 + \dots = \sum_{i=1}^{p} (i-2)f_p = p-2 1f3+2f4+⋯=∑i=1p(i−2)fp=p−2
- 1 g 3 + 2 g 4 + ⋯ = ∑ i = 1 p ( i − 2 ) g p = p − 2 1g_3 + 2g_4 + \dots = \sum_{i=1}^{p} (i-2)g_p = p-2 1g3+2g4+⋯=∑i=1p(i−2)gp=p−2
- 1 ( f 3 − g 3 ) + 2 ( f 4 − g 4 ) + ⋯ = ∑ i = 1 p ( i − 2 ) ( f p − g p ) = 0 1(f_3-g_3) + 2(f_4-g_4) + \dots = \sum_{i=1}^{p} (i-2)(f_p-g_p) = 0 1(f3−g3)+2(f4−g4)+⋯=∑i=1p(i−2)(fp−gp)=0
如果不满足这个条件就不是平面哈密顿图,也就是非哈密顿平面图.
9.3 库拉托斯基定理、对偶图
定义9.3.1 细分图
x = u v x=uv x=uv是 G = ( V , E ) G=(V,E) G=(V,E)的一条边,又w不是G的顶点,则当用 u w , w v uw,wv uw,wv代替边x的时候,就称x被细分。如果G的某些边被细分,产生的图称为G的细分图。
定义9.3.2 同胚
两个图称为同胚的,如果它们都可以从一个图通过一系列边细分得到。
定理9.3.1 库拉托斯基定理(可平面图充要条件)
一个图是可平面的充要条件是它没有同胚于 K 5 , K 3 , 3 K_5,K_{3,3} K5,K3,3的子图。[这个充分性证明比较复杂,课本也无]
定义9.3.3 初等收缩
一个图G的一个初等收缩由等同两个邻接的顶点uv得到,即从G中去掉uv,然后再加上一个顶点w,使得w邻接于所有邻接于u或v的顶点。一个图G可收缩到图H,如果H可以从G经一系列的初等收缩得到。
说人话:用一个新的点w代替两个邻接的顶点uv
定理9.3.2 瓦格纳定理(可平面图充要条件-反向)
一个图是可平面的当且仅当它没有一个可以收缩到 K 5 , K 3 , 3 K_5,K_{3,3} K5,K3,3的子图。
定义9.3.4 对偶图
G=(V,E)是一个平面图,由G按照以下方法构造一个图 G ∗ G^* G∗,称为G的对偶图。
- G的每个面f对应地由 G ∗ G^* G∗地一个顶点 f ∗ f^* f∗。
- 对G地每条边e对应地有 G ∗ G^* G∗的一条边 e ∗ e^* e∗.
- G ∗ G^* G∗的两个顶点 f ∗ , g ∗ f^*,g^* f∗,g∗由边 e ∗ e^* e∗联结,等价于G中的f和g以公共边e连接.
- 如果某条边x仅在G的一个面中出现而不是两个面的公共边,则这个面在 G ∗ G^* G∗中增加一个自环.
9.4 图的顶点着色
定义9.4.1 顶点着色
图的一种(顶点)着色是指对图的每个顶点指定一种颜色,使得没有两个邻接的顶点有同一种颜色.G的一个n-着色是用n种颜色对G着色.
G=(V,E)已着色,则着同一个颜色的那些顶点之集称为G的一个色组.同一色组内各顶点互不邻接.这样的顶点集合称为G的一个顶点独立集.如果G有一个n-着色,则G的顶点集V被这个着色划分称n个色组.
定义9.4.2 色数
图G的色数是使G为n-着色的数n的最小值.G的色数记作 χ ( G ) \chi(G) χ(G).如果 χ ( G ) ≤ n \chi(G) \leq n χ(G)≤n则称G是n-可着色的.若 χ ( G ) = n \chi(G) = n χ(G)=n,则称G是n色的.
常见的几种图的色数
- χ ( K p ) = p \chi(K_p) = p χ(Kp)=p
- χ ( K p c ) = 1 \chi(K_p^c) = 1 χ(Kpc)=1
- χ ( K m , n ) = 2 \chi(K_{m,n}) = 2 χ(Km,n)=2
- χ ( C 2 n ) = 2 , 偶 数 长 度 的 圈 \chi(C_{2n}) = 2,偶数长度的圈 χ(C2n)=2,偶数长度的圈
- χ ( C 2 n + 1 ) = 3 , 奇 数 长 度 的 圈 \chi(C_{2n+1}) = 3,奇数长度的圈 χ(C2n+1)=3,奇数长度的圈
- χ ( T ) = 2 , T 非 平 凡 树 \chi(T) = 2,T非平凡树 χ(T)=2,T非平凡树
定理9.4.1 可双色图
一个图是可双色的当且仅当它没有奇数长度的圈.
定理9.4.2 最大顶点度与色数
G一定是 Δ ( G ) + 1 \Delta(G)+1 Δ(G)+1-可着色的.其中 Δ ( G ) \Delta(G) Δ(G)是顶点度最大值.
定理9.4.3 最大定点数与色数的特殊情况
G 1.是连通图 2.且不是完全图 3.也没有奇数长度的圈 则G是 Δ ( G ) \Delta(G) Δ(G)-可着色的.
定理9.4.4 平面图着色
每一个平面图G都是6-可着色的.证明:归纳于顶点数.
定理9.4.5 5色定理
每一个平面图都是5-可着色的.证明:归纳于顶点数.
定理9.4.6 4色定理
每个平面图都是4-可着色的.这个由计算机证明过.
9.5 图的边着色
[断更]