自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 Task04:HOG特征描述算子-行人检测

Task04:HOG特征描述算子-行人检测4.1 简介4.2 学习目标4.3 内容大纲4.3 内容介绍总结4.1 简介本次任务将学习一种在深度学习之前非常流行的图像特征提取技术——方向梯度直方图(Histogram of Oriented Gradients),简称HOG特征。HOG特征是在2005年CVPR的会议发表,在图像手工特征提取方面具有里程碑式的意义,当时在行人检测领域获得了极大成功。学习HOG特征的思想也有助于我们很好地了解传统图像特征描述和图像识别方法,本次任务我们将学习到HOG背后的设

2020-07-06 20:07:06 241

原创 Task03 Haar特征描述算子-人脸检测

Datawhale 计算机视觉基础-Task03 Haar特征描述算子-人脸检测3.1 简介3.2 学习目标3.3 算法理论介绍3.1 简介Haar-like特征最早是由Papageorgiou等应用于人脸表示,在2001年,Viola和Jones两位大牛发表了经典的《Rapid Object Detection using a Boosted Cascade of Simple Features》和《Robust Real-Time Face Detection》,在AdaBoost算法的基础上,使用

2020-07-02 18:18:07 428

原创 Datawhale计算机视觉基础-图像处理(下)-Task02 LBP特征描述算子-人脸检测

脸检测相关流程1.选择图像上的某个(矩形)区域作为一个观察窗口;2.在选定的窗口中提取一些特征对其包含的图像区域进行描述;3.根据特征描述来判断这个窗口是不是正好框住了一张人脸。LBP算法LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen, 和D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理特征;LBP的

2020-06-28 22:32:37 231

原创 Harris特征点检测

Datawhale 计算机视觉基础-图像处理(下)- Task01 Harris特征点检测器-兴趣点检测简介内容介绍结果简介 在图像处理领域中,特征点又被称为兴趣点或者角点,它通常具有旋转不变性和光照不变性和视角不变性等优点,是图像的重要特征之一,常被应用到目标匹配、目标跟踪、三维重建等应用中。点特征主要指图像中的明显点,如突出的角点、边缘端点、极值点等等,用于点特征提取的算子称为兴趣点提取(检测)算子,常用的有Harris角点检测、FAST特征检测、SIFT特征检测及SURF特征检测。 本次任务学习

2020-06-24 23:17:51 417

原创 Datawhale 零基础入门CV赛事-Task5 模型集成

这里写目录标题Datawhale 零基础入门CV赛事-Task5 模型集成5.1 学习目标5.2 集成学习方法小结Datawhale 零基础入门CV赛事-Task5 模型集成本章作为本次赛题学习的最后一章,将会讲解如何使用集成学习提高预测精度。5.1 学习目标学习集成学习方法以及交叉验证情况下的模型集成学会使用深度学习模型的集成学习5.2 集成学习方法在机器学习中的集成学习可以在一定程度上提高预测精度,常见的集成学习方法有Stacking、Bagging和Boosting,同时这些集成学习方法

2020-06-02 21:25:18 114

原创 Datawhale 零基础入门CV-Task4 模型训练与验证

Datawhale 零基础入门CV-Task4 模型训练与验证模型训练与验证学习目标理解验证集的作用,并使用训练集和验证集完成训练学会使用Pytorch环境下的模型读取和加载,并了解调参流程构造验证集在机器学习模型(特别是深度学习模型)的训练过程中,模型是非常容易过拟合的。深度学习模型在不断的训练过程中训练误差会逐渐降低,但测试误差的走势则不一定。在模型的训练过程中,模型只能利用训练数据来进行训练,模型并不能接触到测试集上的样本。因此模型如果将训练集学的过好,模型就会记住训练样本的细节

2020-05-30 21:14:51 192

原创 Datawhale 零基础入门CV-Task3 字符识别模型

1.学习目标学习CNN基础和原理;使用Pytorch框架构建CNN模型并完成训练。2.CNN介绍卷积神经网络(CNN)是是一类特殊的人工神经网络,是深度学习中一个重要的分支。CNN在很多领域都表现优异,精度和速度比传统计算学习算法高很多。特别是在计算机视觉领域,CNN是解决图像分类、图像检索、物体检测和语义分割的主流模型。特别是在计算机视觉领域,CNN是解决图像分类、图像检索、物体检测和语义分割的主流模型。CNN每一层由众多的卷积核组成,每个卷积核对输入的像素进行卷积操作,得到下一次的输入。随着网络层

2020-05-26 16:30:30 161

原创 Datawhale 零基础入门CV赛事-Task2 数据读取与数据扩增

Datawhale 零基础入门CV赛事-Task2 数据读取与数据扩增1.数据读取与数据扩增本章主要内容为数据读取、数据扩增方法和Pytorch读取赛题数据三个部分组成。1.1 学习目标学习Python和Pytorch中图像读取学会扩增方法和Pytorch读取赛题数据1.2 图像读取由于赛题数据是图像数据,赛题的任务是识别图像中的字符。因此我们首先需要完成对数据的读取操作,在Python中有很多库可以完成数据读取的操作,比较常见的有Pillow和OpenCV。1.3 数据扩增方法现在回到赛

2020-05-23 21:00:37 153

原创 Datawhale 零基础入门CV赛事-Task1 赛事理解

Datawhale 零基础入门CV赛事-Task1 赛事理解1 赛题理解赛题名称:零基础入门CV之街道字符识别赛题目标:通过这道赛题可以引导大家走入计算机视觉的世界,主要针对竞赛选手上手视觉赛题,提高对数据建模能力。赛题任务:赛题以计算机视觉中字符识别为背景,要求选手预测街道字符编码,这是一个典型的字符识别问题。在本次的学习中,查看了教程后,作为一个初学者有些手足无措,配置好环境后开始对每个模块进行熟悉。例如:定义好读取图像的Dataset:class SVHNDataset(Dataset)

2020-05-20 19:29:56 249 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除