ARMv9能给ARM带来新一轮腾飞吗?(人工智能篇)

在这里插入图片描述

开篇

图1 ARMv9发布 [1]
  自从2011年10月ARM发布ARMv8以来,一晃已经过去了近10年。在此期间,ARM的芯片出货量从11年的79亿片 [2]涨到18年的229亿片 [3],收入从11年的约7.85亿美元 [4]涨到19年的18.98亿美元 [5],非常的成功,其中两个技术起到了重要的作用:
  1. ARMv8引入了64bit,从而让ARM从低端处理器一跃进入PC和服务器领域,其影响力从最近苹果在MacBook和Mac mini上使用ARM替换x86可见一斑。
  2. TrustZone被ARMv8-M引入嵌入式领域,为目前万物互联大趋势提供了坚实的硬件保护能力。
图2 ARM芯片出货量一览 [3]
  但ARM近两年的表现似乎不再亮眼,ARM曾经在IP市场占用率上达到过50%,2019年却已降到40.8% (2018年是44.7%) [6],2019年收入只上涨3.4% [5]。ARM今年3月发布ARMv9,自然是想借着新技术继续之前的发展势头。但ARM能得偿所愿吗?   本文试图介绍ARMv9的相关技术,但目前ARM并未开放太多技术资料,因此很多内容不够详实,敬请谅解。 # 人工智能上的野心   ARM在ARMv8推出后,近十年间陆续推出了各种扩展,应对不同的市场需求,其中很多都是针对快速发展的人工智能(AI)的,比如在ARMv8.1-M中引入MVE(M-Profile Vector Extension),就是为M系列增加AI的处理能力。而在A系列ARMv8.2中引入的SVE(Scalable Vector Extension),更是增强了向量处理,机器学习,数字信号处理等AI各方向的能力。ARMv9更是将其升级到SVE2。据说Nvidia斥资400亿美元收购ARM就是看中了这点。下面我们就看看ARM为了AI布局推出的SVE/SVE2是个什么技术。   在传统计算机体系结构中,并行计算是提高处理器性能的基本方法,最核心的思想就是通过增加硬件冗余,提高单位时间执行的工作量。而并行计算技术可以分成3类:指令级并行技术(Instruction-Level Parallelism),数据级并行技术(Data-Level Parallelism)和线程级并行技术(Thread-Level Parallelism)。SVE和NEON就是ARM提供的数据级并行的技术方案。 ## 邯郸学步(NEON)   在ARM推出SVE前,NEON已经为多媒体等相关应用场景服务了快20年了。NEON是和Intel的MMX, SSE2, AVX, AVX-512技术类似的SIMD(Single Instruction Multiple Data)技术,通过增加数据寄存器的位宽,从而提供单条指令处理一组数据(向量)的能力。NEON在ARMv8中提供的是128bit寄存器位宽,相对于AAr
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值