计算网格顶点的法向量
计算网格顶点的法向量是3D图形学中常见的问题。法向量对于光照计算、渲染和碰撞检测等应用都十分重要。本文将介绍一种计算网格顶点法向量的方法,并提供相应的源代码。
这种方法基于以下两个前提:首先,任何光滑曲面的法向量可以通过其上每个面的法向量之和得到。其次,对于每个网格顶点,可以通过其相邻面的法向量进行加权平均来近似其法向量。
在实现时,我们需要先计算出每个面的法向量。这可以通过取该面上任意三个不共线的点,并计算这三个点构成的三角形的法向量得到。对于一个三角形 ABC,其法向量可以通过以下公式计算:
N = (B - A) × (C - A)
其中,×为叉积运算符。
有了每个面的法向量,接下来就可以计算每个网格顶点的法向量。遍历每个顶点,找到与该顶点相邻的所有面,并对这些面的法向量进行加权平均。权重可以通过每个面的面积计算得到。具体而言,假设一个网格顶点 P 附近有 n 个面,其面积分别为 A1, A2, …, An,那么 P 的法向量可以通过以下公式计算得到:
N = (N1 * A1 + N2 * A2 + … + Nn * An) / (A1 + A2 + … + An)
其中,N1, N2, …, Nn 分别为相邻 n 个面的法向量。
下面是采用 C++ 编写的示例代码&#x