七种方式求斐波那契(Fibonacci)数列通项

一:递归实现
   使用公式f[n]=f[n-1]+f[n-2],依次递归计算,递归结束条件是f[1]=1,f[2]=1。
二:数组实现
   空间复杂度和时间复杂度都是0(n),效率一般,比递归来得快。
三:vector<int>实现
   时间复杂度是0(n),时间复杂度是0(1),就是不知道vector的效率高不高,当然vector有自己的属性会占用资源。
四:queue<int>实现
   当然队列比数组更适合实现斐波那契数列,时间复杂度和空间复杂度和vector<int>一样,但队列太适合这里了,
   f(n)=f(n-1)+f(n-2),f(n)只和f(n-1)和f(n-2)有关,f(n)入队列后,f(n-2)就可以出队列了。
五:迭代实现
   迭代实现是最高效的,时间复杂度是0(n),空间复杂度是0(1)。
六:公式实现
   百度的时候,发现原来斐波那契数列有公式的,所以可以使用公式来计算的。

          由于double类型的精度还不够,所以程序算出来的结果会有误差,如果把公式展开计算,得出的结果就是正确的。

          完整的实现代码如下:

#include "iostream"
#include "queue"
#include "cmath"
using namespace std;

int fib1(int index)     //递归实现
{
	if(index<1)
	{
		return -1;
	}
	if(index==1 || index==2)
		return 1;
	return fib1(index-1)+fib1(index-2);
}
int fib2(int index)     //数组实现
{
	if(index<1)
	{
		return -1;
	}
	if(index<3)
	{
		return 1;
	}
	int *a=new int[index];
	a[0]=a[1]=1;
	for(int i=2;i<index;i++)
		a[i]=a[i-1]+a[i-2];
	int m=a[index-1];
	delete a;         //释放内存空间
	return m;
}

int fib3(int index)           //借用vector<int>实现
{
	if(index<1)
	{
		return -1;
	}

	vector<int> a(2,1);      //创建一个含有2个元素都为1的向量
	a.reserve(3);
	for(int i=2;i<index;i++)
	{
		a.insert(a.begin(),a.at(0)+a.at(1));
		a.pop_back();
	}
	return a.at(0);
} 

int fib4(int index)       //队列实现
{
	if(index<1)
	{
		return -1;
	}
	queue<int>q;
	q.push(1);
	q.push(1);
	for(int i=2;i<index;i++)
	{
		q.push(q.front()+q.back());
		q.pop();
	}
	return q.back();
}
int fib5(int n)          //迭代实现
{
	int i,a=1,b=1,c=1;
	if(n<1)
	{
		return -1;
	}
	for(i=2;i<n;i++)
	{
		c=a+b;     //辗转相加法(类似于求最大公约数的辗转相除法)
		a=b;
		b=c;
	}
	return c;
}
int fib6(int n)
{
	double gh5=sqrt((double)5);
	return (pow((1+gh5),n)-pow((1-gh5),n))/(pow((double)2,n)*gh5);
} 

int main(void)
{
	printf("%d\n",fib3(6));
	system("pause");
	return 0;
}

七:二分矩阵方法

如上图,Fibonacci 数列中任何一项可以用矩阵幂算出,而n次幂是可以在logn的时间内算出的。
下面贴出代码:

void multiply(int c[2][2],int a[2][2],int b[2][2],int mod)
{
	int tmp[4];
	tmp[0]=a[0][0]*b[0][0]+a[0][1]*b[1][0];
	tmp[1]=a[0][0]*b[0][1]+a[0][1]*b[1][1];
	tmp[2]=a[1][0]*b[0][0]+a[1][1]*b[1][0];
	tmp[3]=a[1][0]*b[0][1]+a[1][1]*b[1][1];
	c[0][0]=tmp[0]%mod;
	c[0][1]=tmp[1]%mod;
	c[1][0]=tmp[2]%mod;
	c[1][1]=tmp[3]%mod;
}//计算矩阵乘法,c=a*b

int fibonacci(int n,int mod)//mod表示数字太大时需要模的数
{
	if(n==0)return 0;
	else if(n<=2)return 1;//这里表示第0项为0,第1,2项为1

	int a[2][2]={{1,1},{1,0}};
	int result[2][2]={{1,0},{0,1}};//初始化为单位矩阵
	int s;
	n-=2;
	while(n>0)
	{
		if(n%2 == 1)
			multiply(result,result,a,mod);
		multiply(a,a,a,mod);
		n /= 2;
	}//二分法求矩阵幂
	s=(result[0][0]+result[0][1])%mod;//结果
	return s;
}
附带的再贴上二分法计算a的n次方函数。

int pow(int a,int n)
{
	int ans=1;
	while(n)
	{
		if(n&1)
			ans*=a;
		a*=a;
		n>>=1;
	}
	return ans;
}



 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值