斐波那契数列以及Catalan数通项公式的推导

本文详细介绍了斐波那契数列和卡特兰数的通项公式推导过程。通过生成函数法,解析求解了斐波那契数列的生成函数,并将其转化为等比数列的和,得到通项公式f(n)=5(21+5)n−(21−5)n。同时,对于卡特兰数,通过递推公式构建生成函数并解得F(x)=2x1−1−4x,然后利用广义二项式定理展开,最终得出卡特兰数通项公式f(n)=n+1(n2n)。
摘要由CSDN通过智能技术生成

1、斐波那契数列通项公式推导:
已知斐波那契数列的递推公式为 f ( n ) = f ( n − 1 ) + f ( n − 2 ) f(n)=f(n-1)+f(n-2) f(n)=f(n1)+f(n2) f ( 0 ) = 0 , f ( 1 ) = 1 f(0)=0,f(1)=1 f(0)=0,f(1)=1
设斐波那契数列的生成函数为 F ( x ) F(x) F(x), F ( x ) = ∑ i = 0 ∞ f ( i ) x i F(x)=\sum_{i=0}^{\infty}f(i)x^i F(x)=i=0f(i)xi
现推导该生成函数的封闭形式:
F ( x ) = f ( 0 ) + f ( 1 ) x + f ( 2 ) x 2 + . . . + x F ( x ) = f ( 0 ) x + f ( 1 ) x 2 + f ( 2 ) x 3 + . . + F ( x ) + x F ( x ) = f ( 0 ) + f ( 2 ) x + f ( 3 ) x 2 + . . . + [ F ( x ) + x F ( x ) + f ( 1 ) ] x = f ( 0 ) + f ( 1 ) x + f ( 2 ) x 2 + . . . + = F ( x ) \begin{aligned}F(x)&=f(0)+f(1)x+f(2)x^2+...+\\ xF(x)&=f(0)x+f(1)x^2+f(2)x^3+..+\\ F(x)+xF(x)&=f(0)+f(2)x+f(3)x^2+...+\\ [F(x)+xF(x)+f(1)]x&=f(0)+f(1)x+f(2)x^2+...+=F(x)\end{aligned} F(x)xF(x)F(x)+xF(x)[F(x)+xF(x)+f(1)]x=f(0)+f(1)x+f(2)x2+...+=f(0)x+f(1)x2+f(2)x3+..+=f(0)+f(2)x+f(3)x2+...+=f(0)+f(1)x+f(2)x2+...+=F(x)

F ( x ) = ( F ( x ) + x F ( x ) + f ( 1 ) ) x F ( x ) = x 1 − x − x 2 \begin{aligned} F(x)&=(F(x)+xF(x)+f(1))x\\ F(x)&=\frac{x}{1-x-x^2} \end{aligned} F(x)F(x)=(F(x)+xF(x)+f(1))x=1xx2x
不妨假设 F ( x ) = A 1 − a x + B 1 − b x F(x)=\frac{A}{1-ax}+\frac{B}{1-bx} F(x)=1axA+1bxB
那么得到一个方程组
{ A + B = 0 A b + a B = − 1 a + b = 1 a b = − 1 \left\{\begin{matrix} A+B=0 \\ Ab+aB=-1 \\ a+b=1 \\ ab=-1 \end{matrix}\right. A+B=0Ab+aB=1a+b=1ab=1
解得
{ A = 1 5 B = − 1 5 a = 1 + 5 2 b = 1 − 5 2 \left\{\begin{matrix} A=\frac{1}{\sqrt 5}\\ B=-\frac{1}{\sqrt 5} \\ a=\frac{1+\sqrt 5}{2} \\ b=\frac{1-\sqrt 5}{2} \end{matrix}\right. A=5 1B=5 1a=21+5 b=215
将系数代入得
F ( x ) = 1 5 1 − 1 + 5 2 x + − 1 5 1 − 1 − 5 2 x F(x)=\frac{\frac{1}{\sqrt 5}}{1-{\frac{1+\sqrt 5}{2}}x}+\frac{-\frac{1}{\sqrt 5}}{1-{\frac{1-\sqrt 5}{2}}x} F(x)=121+

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值