转载请标明出处,原文地址:http://blog.csdn.net/hackbuteer1/article/details/8035261
1、快速找出一个数组中的最大数、第二大数。
思路:如果当前元素大于最大数 max,则让第二大数等于原来的最大数 max,再把当前元素的值赋给 max。如果当前的元素大于等于第二大数secondMax的值而小于最大数max的值,则要把当前元素的值赋给 secondMax。void GetSecondMaxNumber(int *arr , int n)
{
int i , max , second_max;
max = arr[0];
second_max = 0x80000000;
for(i = 1 ; i < n ; ++i)
{
if(arr[i] > max)
{
second_max = max;
max = arr[i];
}
else
{
if(arr[i] > second_max)
second_max = arr[i];
}
}
cout<<max<<" "<<second_max<<endl;
}
2、试着用最小的比较次数去寻找数组中的最大值和最小值。
解法一:
扫描一次数组找出最大值;再扫描一次数组找出最小值。
比较次数2N-2
转载请标明出处,原文地址:http://blog.csdn.net/hackbuteer1/article/details/8035261
解法二:
将数组中相邻的两个数分在一组, 每次比较两个相邻的数,将较大值交换至这两个数的左边,较小值放于右边。
对大者组扫描一次找出最大值,对小者组扫描一次找出最小值。
比较1.5N-2次,但需要改变数组结构
解法三:
每次比较相邻两个数,较大者与MAX比较,较小者与MIN比较,找出最大值和最小值。
方法如下:先将一对元素互相进行比较,然后把最小值跟当前最小值进行比较,把最大值跟当前最大值进行比较。因此每两个元素需要3次比较。如果n为奇数,那么比较的次数是3*(n/2)次比较。如果n为偶数,那么比较的次数是3n/2-2次比较。因此,不管是n是奇数还是偶数,比较的次数至多是3*(n/2),具体的代码如下:
void GetMaxAndMin(int *arr , int n , int &max , int &min)
{
int i = 0 ;
if(n & 1) // 奇数
{
max = min = arr[i++];
}
else
{
if(arr[0] > arr[1])
{
max = arr[0];
min = arr[1];
}
else
{
max = arr[1];
min = arr[0];
}
i += 2;
}
for( ; i < n ; i += 2)
{
if(arr[i] > arr[i+1])
{
if(arr[i] > max)
max = arr[i];
if(arr[i+1] < min)
min = arr[i+1];
}
else
{
if(arr[i+1] > max)
max = arr[i+1];
if(arr[i] < min)
min = arr[i];
}
}
}
3、重排问题
给定含有n个元素的整型数组a,其中包括0元素和非0元素,对数组进行排序,要求:1、排序后所有0元素在前,所有非零元素在后,且非零元素排序前后相对位置不变
2、不能使用额外存储空间
例子如下
输入 0、3、0、2、1、0、0
输出 0、0、0、0、3、2、1
分析
此排序非传统意义上的排序,因为它要求排序前后非0元素的相对位置不变,或许叫做整理会更恰当一些。我们可以从后向前遍历整个数组,遇到某个位置i上的元素是非0元素时,如果arr[k]为0,则将arr[i]赋值给arr[k],arr[i]赋值为0。实际上i是非0元素的下标,而k是0元素的下标。
void Arrange(int *arr , int n)
{
int i , k = n-1;
for(i = n-1 ; i >=0 ; --i)
{
if(arr[i] != 0)
{
if(arr[k] == 0)
{
arr[k] = arr[i];
arr[i] = 0;
}
--k;
}
}
}
4、找出绝对值最小的元素
给定一个有序整数序列(非递减序),可能包含负数,找出其中绝对值最小的元素,比如给定序列 -5、-3、-1、2、8 则返回1。分析:由于给定序列是有序的,而这又是搜索问题,所以首先想到二分搜索法,只不过这个二分法比普通的二分法稍微麻烦点,可以分为下面几种情况
如果给定的序列中所有的数都是正数,那么数组的第一个元素即是结果。
如果给定的序列中所有的数都是负数,那么数组的最后一个元素即是结果。
如果给定的序列中既有正数又有负数,那么绝对值的最小值一定出现在正数和负数的分界处。
为什么?因为对于负数序列来说,右侧的数字比左侧的数字绝对值小,如上面的-5、-3、-1,而对于整整数来说,左边的数字绝对值小,比如上面的2、8,将这个思想用于二分搜索,可先判断中间元素和两侧元素的符号,然后根据符号决定搜索区间,逐步缩小搜索区间,直到只剩下两个元素。
单独设置一个函数用来判断两个整数的符号是否相同
bool SameSign(int m , int n)
{
if((m>>31) == (n>>31))
return true;
else
return false;
}
// 找出一个非递减序整数序列中绝对值最小的数
int Mini