k-近邻分类算法:给定一个训练集,对新输入的实例在这个集合中找k个与该实例最近的邻居,然后判断这k个邻居大多数属于某一类,于是新输入的实例就被划分为这一类。(属于惰性学习,并不具有明显的学习行为)
鸢尾花数据集
提取码:2dn7
k-近邻算法的三个核心要素:
- k值的选取
- 邻居距离的度量
- 分类决策的制定
k值的选取对分类器的性能的影响。
k值小的影响 | k值大的影响 |
---|---|
近似误差小,但预测的结果对训练样本非常敏感,鲁棒性较差。 | 学习误差有所降低,但随着k值增大,分类错误率又会很快回升。k 值的增大裹挟着噪声而来,致使近似误差增大。 |
邻居距离的度量:不量化,无以度量
- 归一化处理(Z-Score法,Min-Max法)
普遍的邻居距离度量有:
- 欧几里得距离
- 曼哈顿距离
- 马氏距离
- 海明距离
分类决策的制定
- 平等投票表决原则(存在偏差较大)
- 加权投票原则(距离越近的邻居权重越大)
实操
利用下载的鸢尾花特征数据生成鸢尾花可视化图
filename='iris.csv'
df=pd.read_csv('iris.csv',header=None)
X=df.iloc[0:150,[0,2]].values
plt.scatter(X[0:50,0],X[:50,1],color='blue',marker='x',label='setosa')
plt.scatter(X[50:100,0],X[50:100,1],color='red',marker='o',label='versicolor')
plt.scatter(X[100:150,0],X[100:150,1],color='green',marker='*',label='virginica')
plt.xlabel('petal width')
plt.ylabel('sepal length')
plt.legend(loc='upper left')
plt.show()
完整的训练,预测,以及评估代码:
import numpy as np
from csv import reader
import pandas as pd
import matplotlib.pyplot as plt
import csv
import random
import math
import operator
#读取本地数据
#在函数中修改trainingSet和testSet,全局变量trainingSet和testSet也会发生改变:传的参数是引用,即直接检索的是地址
def loadDataset(filename,split,trainingSet=[],testSet=[]):
with open(filename,'r') as csvfile:
lines=csv.reader(csvfile)
dataset=list(lines)
for x in range(len(dataset)-1):
for y in range(4):
dataset[x][y]=float(dataset[x][y])
if random.random()<split:
trainingSet.append(dataset[x])
else:
testSet.append(dataset[x])
#计算欧氏距离:
'''
先求得每对样本件的不同特征的差异值,
然后求差值的平方和,
然后再求这个和的平方根
'''
def EuclidDist(instance1,instance2,len):
distance=0.0
for x in range(len):
distance+=pow((instance1[x]-instance2[x]),2)
return math.sqrt(distance)
#找位置点的邻居
def getNeighbors(trainSet,testInstance,k):
distances=[]
length=len(testInstance)-1
for x in range(len(trainSet)):
dist=EuclidDist(testInstance,trainSet[x],length)
distances.append((trainSet[x],dist))
distances.sort(key=operator.itemgetter(1))
neighbors=[]
for x in range(k):
neighbors.append(distances[x][0])
return neighbors
#判断归属的函数getClass
'''
统计邻居的类别,使用投票决策进行判别
'''
def getClass(neighbors):
classVotes={}
for x in range(len(neighbors)):
instance_class=neighbors[x][-1]
if instance_class in classVotes:
classVotes[instance_class]+=1
else:
classVotes[instance_class]=1
#python的内置函数sorted(),原型是sorted(iterable,key,reverse)。
#iterable:指定要排序的可迭代对象。本例中classVotes.items()返回可迭代的字典元素
#key:指定取待排序的那一项进行排序
#reverse:布尔变量,true是降序,false是升序(默认)
sortedVotes=sorted(classVotes.items(),key=operator.itemgetter(1),reverse=True)
return sortedVotes[0][0]
#模型评估
'''
评估的指标是,测试集合的预测类别与其真实类别的比率
'''
def getAccurcy(testSet,predictions):
correct=0
for x in range(len(testSet)):
if(testSet[x][-1]==predictions[x]):
correct+=1
return (correct/float(len(testSet)))*100.0
def main():
trainingSet=[]
testSet=[]
split=0.7
loadDataset('iris.csv',split,trainingSet,testSet)
print('训练集样本数:' + repr(len(trainingSet)))
print('测试集样本数:' + repr(len(testSet)))
predictions=[]
k=3
#对预测集合元素进行预测
for x in range(len(testSet)):
#根据欧式距离(欧几里得)获取要进行预测的元素的neighbor
neighbors=getNeighbors(trainingSet,testSet[x],k)
#调用getClass函数,获取预测类别,然后存储
result=getClass(neighbors)
predictions.append(result)
print('>预测='+repr(result)+',实际='+repr(testSet[x][-1]))
#调用getAccuracy函数,对模型进行评估
accuracy=getAccurcy(testSet,predictions)
print('精确度为:'+repr(accuracy)+'%')
main()
运行结果:
训练集样本数:110
测试集样本数:40
预测=‘Iris-setosa’,实际=‘Iris-setosa’
预测=‘Iris-setosa’,实际=‘Iris-setosa’
预测=‘Iris-setosa’,实际=‘Iris-setosa’
预测=‘Iris-setosa’,实际=‘Iris-setosa’
预测=‘Iris-setosa’,实际=‘Iris-setosa’
预测=‘Iris-setosa’,实际=‘Iris-setosa’
预测=‘Iris-setosa’,实际=‘Iris-setosa’
预测=‘Iris-setosa’,实际=‘Iris-setosa’
预测=‘Iris-setosa’,实际=‘Iris-setosa’
预测=‘Iris-setosa’,实际=‘Iris-setosa’
预测=‘Iris-setosa’,实际=‘Iris-setosa’
预测=‘Iris-versicolor’,实际=‘Iris-versicolor’
预测=‘Iris-versicolor’,实际=‘Iris-versicolor’
预测=‘Iris-versicolor’,实际=‘Iris-versicolor’
预测=‘Iris-versicolor’,实际=‘Iris-versicolor’
预测=‘Iris-versicolor’,实际=‘Iris-versicolor’
预测=‘Iris-versicolor’,实际=‘Iris-versicolor’
预测=‘Iris-versicolor’,实际=‘Iris-versicolor’
预测=‘Iris-versicolor’,实际=‘Iris-versicolor’
预测=‘Iris-versicolor’,实际=‘Iris-versicolor’
预测=‘Iris-versicolor’,实际=‘Iris-versicolor’
预测=‘Iris-versicolor’,实际=‘Iris-versicolor’
预测=‘Iris-versicolor’,实际=‘Iris-versicolor’
预测=‘Iris-versicolor’,实际=‘Iris-versicolor’
预测=‘Iris-virginica’,实际=‘Iris-virginica’
预测=‘Iris-virginica’,实际=‘Iris-virginica’
预测=‘Iris-versicolor’,实际=‘Iris-virginica’
预测=‘Iris-virginica’,实际=‘Iris-virginica’
预测=‘Iris-virginica’,实际=‘Iris-virginica’
预测=‘Iris-virginica’,实际=‘Iris-virginica’
预测=‘Iris-virginica’,实际=‘Iris-virginica’
预测=‘Iris-virginica’,实际=‘Iris-virginica’
预测=‘Iris-virginica’,实际=‘Iris-virginica’
预测=‘Iris-virginica’,实际=‘Iris-virginica’
预测=‘Iris-versicolor’,实际=‘Iris-virginica’
预测=‘Iris-virginica’,实际=‘Iris-virginica’
预测=‘Iris-virginica’,实际=‘Iris-virginica’
预测=‘Iris-virginica’,实际=‘Iris-virginica’
预测=‘Iris-virginica’,实际=‘Iris-virginica’
预测=‘Iris-virginica’,实际=‘Iris-virginica’
精确度为:95.0%