笔记:C#_数据结构_性能对比:List、LinkedList、Dictionary

导言

空间vs时间
要想功能多,操作灵活,势必就会速度慢!
所有的数据结构都在极限灵活性和极限速度之间徘徊。
鱼:灵活性 VS 熊:性能

返回:船坞

1. ArrayList (List:前传)

ArrayList
是一个特殊数组,
通过添加和删除元素就可以动态改变数组的长度。
ArrayList集合相对于数组的优点:
支持自动改变大小,
可以灵活的插入元素,
可以灵活的删除元素,
可以灵活的访问元素。
ArrayList 自身缺陷:
ArrayList只支持一维,
并且查询和检索的速度较慢。
简而言之
灵活性提升,速度不足。

在C#中数据类型分为两类:值类型和引用类型。

值类型
int ,bool, char, double, enum, struct, DateTime等
都是值类型
引用类型
string,Array,class集合 等都是引用类型。

值类型和引用类型的重要特征如下:

差别:
值类型的长度固定,
而引用类型的长度不固定
数据存储:
如果是值类型直接存储在栈中(局部变量),
如果是引用类型,先把数据存储在堆中,然后把堆的地址存储在栈中。
object类:所有类的基类
所有的数据类型都可以转换成object类,
ArrayList 在存储的时候全被转换成object类型存储
这就是为什么ArrayList既可以存储值类型,也可以存储引用类型。
灵活性 换 性能:
当然这也是ArrayList的一个缺点,
由于存储的时候需要把值类型封装成object类型,
取出来的时候需要再把object类型再转换成值类型,
这一装箱和拆箱的过程非常消耗性能。
正所谓,鱼与熊掌,不可兼得。

扩展阅读

装箱:
由值类型封装成object类型的过程称为装箱。
拆箱:
由object类型转换成值类型的过程称为拆箱。
To Top

2. List

传承:
List 继承了ArrayList的特点,高灵活性。
改进:
基于ArrayList低性能的弱点,我们进行了改进!
在声明时需要指定类型,避免装箱拆箱操作,提升性能。
只是多写个<int>就极大提高了速度,何乐而不为。
特点:
拥有索引,可进行排序,修改等等。
To Top

3. LinkedList

新的问题:
ArrayList或者List虽说灵活性很好,
但都有个缺陷,插入元素或者移除元素时速度较慢,
因为存在:后续元素的位置变化!
厌恶真空:
中间一旦有人缺席,所有人都要前移去补位,牵一发动全身,
因此,没事千万别往ArrayList和List中间踢人或插队。
避免造成连锁反应,途耗性能!
解决方案:
LinkedList每个元素记录下一个元素的位置,
插入或者移除元素时只需要修改标记即可,
不用移动后面的元素,大大提高了效率。

使用方法

ArrayList vs Lis vs LinkedList
尽量避免用ArrayList,多线程时候可以用ConcurrentBag代替。
插入、删除较多用LinkedList,否则用List

包(Bag)包可包含重复元素(此处对应List)。
集(Set)集中不能包含重复元素。

To Top

4. HashTable

key-value组合,可以添加不同类型的数据,取出之后需要转换成对应类型

  Hashtable hashtable = new Hashtable();
    
  hashtable.Add("Name", "HadsNyx");
  hashtable.Add("age", 25);
  return hashtable;

HashTable线程安全,允许单线程写入,多线程读取。

To Top

5. Dictionary

key-value组合,必须指定数据类型

特点:
速度较快,不必装箱拆箱
非线程安全(即使这样,也可以用ConcurrentDictionary代替)
HashTable vs Dictionary :
Dictionary效率高,但是人为lock保持线程安全时效率反而低下。
多线程编程用ConcurrentDictionary,只有单线程用Dictionary。
优化小技巧:
由于Dictionary有底层,有桶和链表结构,
有时候将List转为Dictionary进行操作,
(用主键作为key,保证无重复元素),反而效率更高。
To Top

6. 回顾

性能排序:
插入性能: LinkedList > Dictionary > HashTable > List
遍历性能:List > LinkedList > Dictionary > HashTable
删除性能: Dictionary > LinkedList > HashTable > List
统计:
Dictionary,3项性能都在前三的位置
LinkedList,3项性能都在前二的位置
小结:
在修改较频繁,且查找和删除也较多时,首选LinkedList,
在主要以删除为主,插入为辅,且查找较少时,首选Dictionary,
在查找频繁,而又无需修改的情况下,则首选List。

总结:(干货,直接来这里)

这里给出笔者结论:
只查找,首选List;
插入为主,查找和删除为辅,首选LinkedList;
删除为主,查找和插入为辅,首选Dictionary;
注意:是插入不是新增,新增大家没多大区别。
To Top

扩展阅读

HashSet<T>和SortedSet<T>
HashSet<T>和SortedSet<T>都属于集
Set:元素不可重复
加入重复元素时并不会报错。
SortedSet还有排序的功能
例如:加入1、3、2,foreach会得到1、2、3

导航图:(右键新窗口中打开,否则404)

To Top
Python 是一种高级语言,其语法简单易懂,非常适合用来实现数据结构和算法。下面介绍几种常用的数据结构和算法的 Python 实现。 1. 数组 在 Python 中,可以用列表list)来实现数组。例如,以下代码实现了一个长度为 5 的整型数组: ``` arr = [0] * 5 ``` 2. 栈 栈是一种后进先出(LIFO)的数据结构,可以用 Python 的列表来实现。例如,以下代码实现了一个栈: ``` stack = [] # 初始化一个空栈 # 入栈 stack.append(1) stack.append(2) stack.append(3) # 出栈 top = stack.pop() # 弹出栈顶元素(3) ``` 3. 队列 队列是一种先进先出(FIFO)的数据结构,可以用 Python 的列表来实现。例如,以下代码实现了一个队列: ``` queue = [] # 初始化一个空队列 # 入队 queue.append(1) queue.append(2) queue.append(3) # 出队 front = queue.pop(0) # 弹出队首元素(1) ``` 4. 链表 链表是一种通过指针链接各个节点的数据结构,可以用 Python 的类来实现。例如,以下代码实现了一个链表节点和链表: ``` class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next class LinkedList: def __init__(self): self.head = None # 在链表末尾插入一个节点 def append(self, val): if not self.head: self.head = ListNode(val) else: curr = self.head while curr.next: curr = curr.next curr.next = ListNode(val) # 删除链表中第一个值为val的节点 def delete(self, val): if not self.head: return if self.head.val == val: self.head = self.head.next return curr = self.head while curr.next: if curr.next.val == val: curr.next = curr.next.next return curr = curr.next ``` 5. 递归 递归是一种通过函数调用自身来解决问题的方法,可以用 Python 的函数来实现。例如,以下代码实现了一个递归函数,计算斐波那契数列第 n 项的值: ``` def fib(n): if n == 0 or n == 1: return n return fib(n-1) + fib(n-2) ``` 6. 排序 排序是一种将数据按照指定规则进行排序的算法,可以用 Python 的内置函数来实现。例如,以下代码实现了一个简单的选择排序: ``` def selection_sort(arr): n = len(arr) for i in range(n): min_idx = i for j in range(i+1, n): if arr[j] < arr[min_idx]: min_idx = j arr[i], arr[min_idx] = arr[min_idx], arr[i] ``` 以上是 Python 实现常用的数据结构和算法的简单介绍,希望对你有所帮助。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值