我的MYsq方法

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Software: PyCharm
# __author__ == "HAI"
# FileName: pymysql自己定义方法.py
# Date  : 2018/10/8 
# Time  : 19:01
"""pymysql"""
import pymysql


def decrotor(fn, *args):
    """
    :param fn: 
    :param args: 
    :return: 
    """
    def wapper(self, *args, **kwargs):
        """
     
        :param self: 
        :param args: 
        :param kwargs: 
        :return: 
        """
        self._get_couser()
        n = fn(self, *args, **kwargs)
        self._close()
        return n

    return wapper



class MysqlConnect(object):
    """
    我的sql类
    """
    def __init__(self, db, host='127.0.0.1', password='123456', port=3306, user='root', *args, **kwargs):
        """
        :param db:
        :param host:
        :param password:
        :param port:
        :param user:
        :param args:
        :param kwargs:
        """
        self.conn = pymysql.connect(host=host, db=db, password=password, port=port, user=user, *args, **kwargs)

    @decrotor
    def table_data_count(self, table_name):
        """
        返回数据总个数
        :param table_name:
        :return:
        """
        query = 'select count(1) as totall from %s ;' % table_name
        self.cur.execute(query)
        return self.cur.fetchone()

    @decrotor
    def get_list(self, query,offset=0, maxnum=1000, *args):
        try:
            offset = int(offset)
            maxnum = int(maxnum)
        except ValueError:
            pass
        else:
            query = query.replace(';', '') + '\tlimit {maxnum} offset {offset}'.format(maxnum=maxnum, offset=offset)
            self.cur.execute(query, *args)
            result = self.cur.fetchall()
            return result

    @decrotor
    def get_one(self, query, *args):
        """
            Execute a query
            :param str query: Query to execute.
            :param args: parameters used with query. (optional)
            :type args: tuple, list or dict
        """
        query = query.replace(';', '') + ' limit 1 offset 0;'
        self.cur.execute(query, *args)
        return self.cur.fetchone()

    @decrotor
    def multiple_modify(self, query, *args):
        # type: (str, list) -> int
        """
            多条插入语句
            self.cursor.executemany('insert into bd(id,name)values(%s,%s)',[(1,'alex'),(2,'eric')])
            Run several data against one query
            :param query: query to execute on server
            :param args:  Sequence of sequences or mappings.  It is used as parameter.
            :return: Number of rows affected, if any.
            This method improves performance on multiple-row INSERT and
            REPLACE. Otherwise it is equivalent to looping over args with
            execute().
        """
        self.cur.executemany(query, *args)
        self.conn.commit()

    @decrotor
    def modify(self, query, *args):
        """
        'insert into test(tests, coumt) VALUES (%s, %s);', ['hello I want to go to bed', 2]
        :param query:
        :param args:
        :return: None
        """
        self.cur.execute(query, *args)
        self.conn.commit()

    @decrotor
    def create(self, query, *args):
        """
        'insert into test(tests, coumt) VALUES (%s, %s);', ['hello I want to go to bed', 2]
        :param query:
        :param args:
        :return: last auto_increment ID
        """
        self.cur.execute(query, *args)
        self.conn.commit()
        return self.cur.lastrowid

    def _get_couser(self, flag=True,):
        """
        :param flag: True 以字典返回
        """

        self.cur = self.conn.cursor(pymysql.cursors.DictCursor) if flag else self.conn.cursor()


    def _close(self):
        """
        关闭游标
        """
        self.cur.close()


    def __del__(self):
        try:
            self.conn.close()
        except pymysql.err.Error:
            pass


if __name__ == '__main__':

    my = MysqlConnect('blogs')
    print(my.table_data_count('test'))
内容概要:本文档详细介绍了一个利用Matlab实现Transformer-Adaboost结合的时间序列预测项目实例。项目涵盖Transformer架构的时间序列特征提取与建模,Adaboost集成方法用于增强预测性能,以及详细的模型设计思路、训练、评估过程和最终的GUI可视化。整个项目强调数据预处理、窗口化操作、模型训练及其优化(包括正则化、早停等手段)、模型融合策略和技术部署,如GPU加速等,并展示了通过多个评估指标衡量预测效果。此外,还提出了未来的改进建议和发展方向,涵盖了多层次集成学习、智能决策支持、自动化超参数调整等多个方面。最后部分阐述了在金融预测、销售数据预测等领域中的广泛应用可能性。 适合人群:具有一定编程经验的研发人员,尤其对时间序列预测感兴趣的研究者和技术从业者。 使用场景及目标:该项目适用于需要进行高质量时间序列预测的企业或机构,比如金融机构、能源供应商和服务商、电子商务公司。目标包括但不限于金融市场的波动性预测、电力负荷预估和库存管理。该系统可以部署到各类平台,如Linux服务器集群或云计算环境,为用户提供实时准确的预测服务,并支持扩展以满足更高频率的数据吞吐量需求。 其他说明:此文档不仅包含了丰富的理论分析,还有大量实用的操作指南,从项目构思到具体的代码片段都有详细记录,使用户能够轻松复制并改进这一时间序列预测方案。文中提供的完整代码和详细的注释有助于加速学习进程,并激发更多创新想法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值