Mashmokh and ACM CodeForces - 414B 【DP】

B. Mashmokh and ACM
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Mashmokh's boss, Bimokh, didn't like Mashmokh. So he fired him. Mashmokh decided to go to university and participate in ACM instead of finding a new job. He wants to become a member of Bamokh's team. In order to join he was given some programming tasks and one week to solve them. Mashmokh is not a very experienced programmer. Actually he is not a programmer at all. So he wasn't able to solve them. That's why he asked you to help him with these tasks. One of these tasks is the following.

A sequence of l integers b1, b2, ..., bl (1 ≤ b1 ≤ b2 ≤ ... ≤ bl ≤ n) is called good if each number divides (without a remainder) by the next number in the sequence. More formally  for all i (1 ≤ i ≤ l - 1).

Given n and k find the number of good sequences of length k. As the answer can be rather large print it modulo 1000000007(109 + 7).

Input

The first line of input contains two space-separated integers n, k (1 ≤ n, k ≤ 2000).

Output

Output a single integer — the number of good sequences of length k modulo 1000000007 (109 + 7).

Examples
input
3 2
output
5
input
6 4
output
39
input
2 1
output
2
Note

In the first sample the good sequences are: [1, 1], [2, 2], [3, 3], [1, 2], [1, 3].

题意:在【1,n】范围内任取k个数,使得a[i+1]%a[i]==0


思路:计数问题加取模,想想就可能是DP了。

dp[i][j]为长度为l,以j为结尾的数量。 

思考:我当前的状态可以由那些状态转移而来,很明显,由长度为i-1,结尾为j约数转移而来。

那么有dp[i][j]=sigmadp[i-1][x] 其中x为j的约数, 那么预处理出所有约数,处理出dp[1][1~n]=1,递推即可

#include <bits/stdc++.h>

typedef long long ll;
using namespace std;

int MOD=1e9+7;
vector <int> vec[2005];
ll dp[2005][2005];


//dp[i][j]=sigmadp[i-1][j约数]
int main(void){
    ll n,k;
    cin >> n>>k;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=i;j++)
            if(i%j==0)  vec[i].push_back(j);
    for(int i=1;i<=n;i++)   dp[1][i]=1;
    for(int i=2;i<=k;i++){
        for(int j=1;j<=n;j++){
            for(int k=0;k<vec[j].size();k++)
                dp[i][j]=(dp[i][j]%MOD+dp[i-1][vec[j][k]]%MOD)%MOD;
        }
    }
    ll ans=0;
    for(int i=1;i<=n;i++)   ans+=(dp[k][i]%MOD);
    cout << ans%MOD << endl;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值