题意:一个序列B1,B2...Bl如果是好的,必须满足Bi | Bi + 1(a | b 代表a整除b), 求长度为K,元素大小小于等于N的序列个数.
思路:看到数据的规模和取模1000000007就知道应该是统计类型的DP了,设dp[i][j]表示以i做结尾长度为j的序列个数.
那么答案就是sum(dp[i][K] | 1<= i <= N)
dp[i][j] = sum(dp[p][j - 1] | p满足p能整除i).
base cases: dp[i][1] = 1
#include <cstdio>
#include <cmath>
using namespace std;
const int MOD = 1000000007;
const int MAX = 2001;
int dp[MAX][MAX];
int main(int argc, char const *argv[]){
int N, K, ans = 0;
scanf("%d%d", &N, &K);
for(int i = 1; i < MAX; ++i){
dp[i][1] = 1;
}
for(int j = 1; j < K; ++j){
for(int i = 1; i <= N; ++i){
for(int p = i; p <= N; p += i){
dp[p][j + 1] = (dp[p][j + 1] + dp[i][j]) % MOD;
}
}
}
for(int i = 1; i <= N; ++i){
ans += dp[i][K];
ans %= MOD;
}
printf("%d\n", ans);
return 0;
}