[Cqoi2014]数三角形[排列组合]

题意:给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个。共线不算.

思路:

  • 容斥
  • $$ ans= C_{(n+1)*(m+1)}^{3} - {SameLine}$$
  • 其中SameLine包括: 斜着共线和垂直水平共线.斜着共线一开始以为只有8个dir错了几次.
  • 枚举2个点,再考虑这2个点的线段上有几个整数点,我们就可以解决这个问题
  • 然而枚举两个点的复杂度为O($$ n^4 $$)
  • 我们只枚举第二个端点的坐标,以(1,1)为第一个端点坐标,再平移这条线段,这条线段能存在的次数有(n-i+1)*(m-i+1)*2,乘2是因为左右对称
  • 最终复杂度是O(n*m*log2n)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e3+3;
const int MOD=1e9+7;
 
ll cul(ll x){
    if(x<3) return 0;
    return x*(x-1)/2*(x-2)/3;
}
 
int main(void){
    int n,m;
    scanf("%d%d",&n,&m);
    n++,m++;
    ll ans=cul(1ll*n*m);
    ans-=m*cul(n);
    ans-=n*cul(m);
    for(int i=2;i<=n;i++){
        for(int j=2;j<=m;j++){
            ll cnt=__gcd(i-1,j-1)-1;
            ans-=(n-i+1)*(m-j+1)*cnt*2;
        }
    }
    printf("%lld\n",ans);
 
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值