- 博客(14)
- 收藏
- 关注
原创 [readpaper] Learning to Predict Vehicle Trajectories with Model-based Planning
预测道路车辆未来轨迹对于自动驾驶至关重要。在本文中,我们介绍了一个名为 PRIME 的新型预测框架,该框架代表了基于模型的规划的预测。与最近使用神经网络对场景上下文进行建模并产生无约束轨迹的预测工作不同,PRIME旨在生成准确和可行性保证的未来轨迹预测。PRIME 通过利用基于模型的生成器在显式约束下生成未来轨迹来保证轨迹的可行性并通过利用基于学习的评估器来选择未来轨迹来实现准确的多模态预测。
2024-04-14 20:33:00 311
原创 [readpaper] A Survey on Trajectory-Prediction Methods for Autonomous Driving
为了在动态环境中安全驾驶,自动驾驶汽车应该能够预测附近交通参与者的未来状态,特别是周围车辆,类似于人类驾驶员预测驾驶的能力。这就是为什么研究人员致力于轨迹预测领域并提出不同的方法。本文是对过去二十年自动驾驶提出的轨迹预测方法的全面和比较回顾。它从问题定义和算法分类开始。然后,详细介绍了基于物理、经典机器学习、深度学习和强化学习的流行方法。最后,本文评估了每种方法的性能,并概述了指导读者的潜在研究方向。自动驾驶,轨迹预测,机器学习,深度学习,强化学习。
2024-04-14 17:42:04 645
原创 [readpaper] BEVerse: Unified Perception and Prediction in Birds-Eye-View for Vision-Centric Autonomo
在本文中,我们提出了 BEVerse,这是一种基于多摄像头系统的3D 感知和预测的统一框架。与专注于改进单任务方法的现有研究不同,BEVerse 特征用于从多摄像头视频中生成时空 Birds-Eye-View (BEV) 表示,并联合推理多个任务以进行以视觉为中心的自动驾驶。具体来说,基于多个时间戳和多视图,BEVerse首先执行共享特征提取,产生4D BEV表征。在自我运动对齐之后,时空编码器用于 BEV 中的进一步特征提取。最后,附加多个任务解码器进行联合推理和预测。
2024-04-14 17:04:30 907
原创 [readpaper] Delving into the Devils of Bird‘s-eye-view Perception: A Review, Evaluation and Recipe
对于感知任务,学习以BEV的形式学习强大的特征表示是一种趋势,这引起了业界和学术界的广泛关注。大多数自动驾驶算法的传统方法在前视或透视的视角中执行检测、分割、跟踪等。由于传感器配置变得更加复杂,集成来自不同传感器的多源信息并在统一视角中表示特征至关重要。BEV感知继承了几个优点,因为表示BEV中的周围场景是直观和融合友好的;对于规划和/或控制等后续模块,在BEV中表示对象是最理想的。BEV感知的核心问题在于(a)如何从透视图到BEV的视图转换重建丢失的3D信息;(b)如何获取BEV网格中的地面真实注释;
2024-04-11 22:51:59 322
原创 marginal motion prediction/joint prediction motion
joint prediciton motion:一次预测所有 agent 的未来轨迹。(only predict once)marginal motion prediction:一次预测一个 agent 的未来轨迹。(for loop)
2024-02-08 23:45:08 264
原创 PyTorch报错insufficient shared memory (shm)
PyTorch报错insufficient shared memory (shm)
2022-06-07 09:22:37 1137
原创 Tensor
PyTorch中的tensor,一般翻译为张量。张量是一种特殊的数据结构,与数组和矩阵非常相似。在 PyTorch 中,使用张量来编码模型的输入和输出,以及模型的参数。张量类似于 NumPy 的 ndarray,但是,张量可以在 GPU 或其他硬件加速器上运行。事实上,如果在CPU上,张量和 NumPy 数组通常可以共享相同的底层内存,从而无需复制数据:import torchimport numpy as np#! convert tensor to numpy arrayt =
2022-05-12 13:53:43 325
原创 图像滤波/卷积操作
一、图像卷积/滤波图像卷积操作可以看成是一个窗口区域在另外一个大的图像上移动,对每个窗口覆盖的区域都进行点乘得到的值作为中心像素点的输出值。窗口的移动是从左到右,从上到下。窗口可以理解成一个指定大小的二维矩阵,里面有预先指定的值,一般也称为卷积核。二、滤波分类1、线性滤波: 对邻域中的像素的计算为线性运算时,如利用窗口函数进行平滑加权求和的运算,或者某种卷积运算,都可以称为线性滤波。常...
2020-04-27 21:21:03 1731
原创 图像的色彩空间转换
关于彩色空间,建议阅读冈萨雷斯的《数字图像处理》第6章彩色图像处理,很详细的介绍。 关于彩色空间,建议阅读冈萨雷斯的《数字图像处理》第6章彩色图像处理,很详细的介绍。 大多数关于图像彩色空间的介绍都是参考书中的内容,或者书中内容基本涵盖了图像彩色空间的基础内容。本文主要介绍OpenCV中关于彩色空间转换的API 。常用的彩色空间有:RGB色彩空间 HSV色彩空间 YUV色彩空间 ...
2020-04-25 20:47:43 748
原创 图像仿射变换
目录1. 原理2. OpenCV代码程序举例3. 应用3.1 数据增广3.2 Spatial Transformer Networks1. 原理图像处理中,可应用仿射变换对二维图像进行平移(Translation)、缩放(Scale)、旋转(Rotation)、翻转(Flip)等操作,同时,这些操作可以进行复合操作。仿射变换可以用矩阵运算劳作,该矩阵称为变换矩阵。...
2020-04-23 21:36:08 1250
原创 图像插值算法
目录1 插值算法简介1.1 定义1.2 作用1.3 应用3. 基于OpenCV的代码实现1 插值算法简介1.1 定义图像插值就是利用已知邻近像素点的灰度值(或RGB图像中的三色值)来产生未知像素点的灰度值,以便由原始图像再生出具有更高分辨率的图像。1.2 作用插值是对原图像的像素重新分布,从而来改变像素数量的一种方法。在图像放大过程中,像素也相应地...
2020-04-21 16:57:42 1624
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人