论文印象
BEV Perception Algorithm:
- Bird Eye's View,鸟瞰图/俯视图,自动驾驶领域,一般以自动驾驶车辆为坐标原点,结合其周围环境信息构成的视图。
- perception,计算机领域,可以理解为计算机通过各种传感器获取外界的信息。
- Algorithm,计算机领域,使用各种数据模型来组织、筛选、处理获取到的外界信息,以达到理解外部的世界。
阅读综述有两种受益:
- 帮助行外人认识该领域。
- 帮助行内人提升对该领域的认识。
摘要
对于感知任务,学习以BEV的形式学习强大的特征表示是一种趋势,这引起了业界和学术界的广泛关注。大多数自动驾驶算法的传统方法在前视或透视的视角中执行检测、分割、跟踪等。由于传感器配置变得更加复杂,集成来自不同传感器的多源信息并在统一视角中表示特征至关重要。BEV感知继承了几个优点,因为表示BEV中的周围场景是直观和融合友好的;对于规划和/或控制等后续模块,在BEV中表示对象是最理想的。BEV感知的核心问题在于(a)如何从透视图到BEV的视图转换重建丢失的3D信息;(b)如何获取BEV网格中的地面真实注释;(c)如何制定管道合并来自不同来源的特征和视图的特征;(d)如何适应和推广算法,因为传感器配置在不同的场景中是不同的。在本次调查中,我们回顾了最近关于 BEV 感知的工作,并对不同的解决方案进行了深入分析。此外,还描述了业界对 BEV 方法的几种系统设计。此外,我们引入了一套完整的实用指南,以提高BEV感知任务的性能,包括相机、激光雷达和融合输入。最后,我们指出该领域未来的研究方向。我们希望这份报告能够为社区提供一些启示,并鼓励更多关于 BEV 感知的研究工作。我们保留一个活跃的存储库来收集最近的工作,并在 https://github.com/OpenDriveLab/Birds-eye-view-Perception 上提供一袋技巧工具箱。
引言
自动驾驶中的感知识别任务本质上是对物理世界的三维几何重建。随着自动驾驶车辆上配备的传感器类型和数量越来越复杂,在统一的角度表示来自不同视图的特征至关重要。著名的鸟瞰(BEV)是一种自然而直接的候选视图,可以作为统一的表示。与二维视觉领域中广泛研究的前视图或透视图相比,BEV 表征有几个固有的优点。
- 首先,它没有 2D 任务中常见的遮挡或尺度问题。识别遮挡或交叉交通的车辆可以更好地解决。【前视图,容易发生遮挡。透视图,近大远小。】【这里会有个疑问?遮挡一旦发生,不管是什么视角(BEV、前视图、透视图等)都会受到影响。即使BEV使用了多个传感器,如果真的发生遮挡了,也难以感知到被遮挡的目标。】
- 此外,以这种形式表示对象或道路元素将有利于后续模块(如规划、控制)开发和部署。
此survery,定义BEV感知为所有以BEV视图做为表征的所有感知任务。
请注意,我们并不打算将 BEV 感知夸大为一个新的研究概念;相反,如何在 B