MITx Advanced Fluid Mechanics 3 学习笔记

Topic 11 Boundary Layers, Separation & Drag

Note1

(自用,未必完整正确)

对N-S方程的变量进行无量纲化,可以写成如下形式:

  • p ∗ = p ρ u 0 2 p^*=\frac {p}{\rho u_0^2} p=ρu02p
  • v ∗ = v u 0 v^* = \frac{v}{u_0} v=u0v
  • D v ∗ D t = − ∇ p ∗ + 1 R e L ∇ 2 v ∗ \frac{Dv^*}{Dt} = -\nabla p^*+\frac{1}{Re_L} \nabla^2 v^* DtDv=p+ReL12v
  • R e L = ρ v L μ Re_L = \frac{\rho v L}{\mu} ReL=μρvL

在主流(远场)中,流动速度与长度尺度都较大,雷诺数较大,惯性力占主导地位,黏性力影响较小,在N-S方程中由于量级的差距可以忽略。但在边界层中,由于长度尺度与速度尺度均较小,雷诺数较小,惯性力与黏性力作用相当(equate),不能忽略。
边界层方程的推导就源于惯性力与黏性力的平衡。首先根据N-S方程写出惯性力项与黏性力项的表达式并进行量纲分析近似(用词可能不准确):

  • 惯性力 ρ v ⋅ ∇ v ∼ ρ u 0 ⋅ u 0 L \rho v\cdot \nabla v \sim \rho u_0 \cdot \frac{u_0}{L} ρvvρu0Lu0
  • 黏性力 μ ∇ 2 v ∼ μ u 0 δ 2 \mu \nabla^2v \sim \mu \frac{u_0}{\delta^2} μ2vμδ2u0

当两者“同等重要”时:

  • ρ u 0 ⋅ u 0 L ∼ μ u 0 δ 2 \rho u_0 \cdot \frac{u_0}{L} \sim \mu \frac{u_0}{\delta^2} ρu0Lu0μδ2u0

得到:

  • δ L ∼ μ ρ u 0 L = 1 R e L \frac{\delta}{L} \sim \sqrt{\frac{\mu}{\rho u_0 L}} = \sqrt{\frac{1}{Re_L}} Lδρu0Lμ =ReL1

上式也可以看出雷诺数大时边界层厚度较小,但这只是一种定性的分析。如果要定量地衡量边界层厚度,主要有3种方法:

  • 速度比例(翻译不一定准确)。达到99%(亦有95%)主流速度的位置作为边界层边缘;
  • 位移厚度 δ ∗ \delta ^* δ(displacement thickness)。由于边界层的存在,靠近壁面部分速度较主流小(叫做速度亏损 velocity defect),因而质量流量较小。位移厚度表示在无黏流体中,保持同样质量流量时,需要将壁面向主流方向平移的距离。写成积分表达式就是:
    • ∫ 0 h v x ( y ) d y = u 0 ( h − δ ∗ ) \int_0^h v_x(y)dy = u_0(h-\delta ^*) 0hvx(y)dy=u0(hδ), h是一个边界层外的比较大的距离,可以理解成 ∞ \infty ?
    • 整理之后写成 δ ∗ = ∫ 0 ∞ ( 1 − v x ( y ) u 0 ) d y \delta ^*=\int_0^{\infty}(1-\frac{v_x(y)}{u_0})dy δ=0(1u0vx(y))dy
  • 动量厚度 Θ \Theta Θ。与质量流量积分衡量黏性带来的质量流量变化类似类似,动量厚度衡量的是由黏性带来的流体动量差,同样写成积分形式(这里直接写成无穷积分):
    • ∫ 0 ∞ ρ v x 2 ( y ) d y = ρ u m 2 ( h − δ ∗ ) \int_0^{\infty} \rho v_x^2(y) dy = \rho u_m^2(h-\delta^*) 0ρvx2(y)dy=ρum2(hδ)
    • 整理得: Θ = ∫ 0 ∞ v x u 0 ( 1 − v x ( y ) u 0 ) d y \Theta = \int_0^{\infty} \frac{v_x}{u_0}(1-\frac{v_x(y)}{u_0})dy Θ=0u0vx(1u0vx(y))dy
    • 由于 v x v_x vx一般小于 u 0 u_0 u0,动量厚度往往小于位移厚度

接下来研究一个具体的边界层流动问题,二维平板边界层
在这里插入图片描述

图1 二维平板边界层(图源网络)

此处将x正方向记为水平向右,y轴正方向记为竖直向上,无穷来流速度记为 u 0 u_0 u0。边界层控制方程同样是流动控制方程,由质量守恒方程与动量守恒方程组成。
由于边界层的存在,近壁面的流线并不是水平的,而是在y方向有一定偏移,这说明流动在y方向有一个很小的但不为0的速度。写出质量守恒方程:
∂ v x ∂ x + ∂ v y ∂ y = 0 (1) \frac{\partial v_x}{\partial x}+\frac{\partial v_y}{\partial y}=0 \tag{1} xvx+yvy=0(1)
进行近似分析:

  • u 0 x + v y δ ∼ 0 \frac{u_0}{x}+\frac{v_y}{\delta} \sim0 xu0+δvy0
  • v y u 0 ∼ δ x \frac{v_y}{u_0} \sim \frac{\delta}{x} u0vyxδ

由于考虑的是定常(stable)的二维平板流动,略去物质导数中的时间项,仅考虑二维动量方程在x方向的分量方程。由于研究的对象是平板,压力总垂直于x方向,因此在x方向没有压力梯度:
ρ v x ∂ v x ∂ x + ρ v y ∂ v x ∂ y = μ ∂ 2 v x ∂ y 2 (2) \rho v_x\frac{\partial v_x}{\partial x}+\rho v_y\frac{\partial v_x}{\partial y} = \mu\frac{\partial^2 v_x}{\partial y^2} \tag{2} ρvxxvx+ρvyyvx=μy22vx(2)

接下来给出方程边界条件(流场边界条件和初始条件):

  • ∀ x > 0 , { v x = 0 , v y = 0 , y = 0 v x → u 0 , v y → 0 , y → ∞ \forall x>0,\left\{\begin{array}{ll} v_x = 0, v_y = 0, &y=0 \\ v_x\to u_0,v_y\to0, &y\to \infty \end{array}\right. x>0,{vx=0,vy=0,vxu0,vy0,y=0y
  • ∀ y > 0 , x = 0 , 有 v x = u 0 \forall y>0,x =0, 有v_x = u_0 y>0,x=0,vx=u0

具体求解过程是把y换成一个相似量 η = y δ ( x ) \eta = \frac{y}{\delta(x)} η=δ(x)y

【TBC】
欢迎指正

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值