题目:微生物增殖
假设有两种微生物X和Y,X出生后每隔3分钟分裂一次(数目加倍),Y出生后每隔2分钟分裂一次(数目加倍)。一个新出生的X,半分钟之后吃掉1个Y,且从此开始每隔1分钟吃掉1个Y。已知新出生的X=10,Y=89,求60分钟后Y的数目。若X=10,Y=90呢?
本题的要求就是写出这两种初始条件下,60分钟后Y的数目。题目的结果令你震惊吗?这不是简单的数字游戏!真实的生物圈有着同样脆弱的性质!也许因为你消灭的那只Y就是最终导致Y种群灭绝的最后一根稻草!
解题思路:模拟增殖过程,以1分钟为时间单位模拟分裂即吃的过程。比较麻烦的是新生的x,它在新生后的半分钟吃掉一个y,然后每个一分钟吃y,这样吃y的时间就不统一了。不过我们单看一个新生x,在它新生后0.5分钟吃一个y,1.5分钟吃一个y,2.5分钟吃一个y,到三分钟的时候这个x吃了3个y,我们可以把它当作1分钟吃一个y,这样就统一了。但是会不会有新生的x吃的时间不能被3整除呢?因为模拟的时间为60分钟,x每3分钟分裂,假设它新生的时间为t,吃的时间为60-t,我们知道t%3==0,那么(60-t)%3==0也成立,故所有新生的x在60分钟内吃y的时间都能被3整除,故可以把x吃y的过程简化为1分钟吃一个y。
#include<iostream>
using namespace std;
int main()
{
long long x = 10, y = 90;
for(int i=1; i<=60; ++i){
y -= x;
if(i%3 == 0){
x *= 2;
}
if(i%2 == 0){
y *= 2;
}
if(y < 0){ //y灭绝了
y = 0;
break;
}
}
cout << y;
return 0;
}
//当y=89时, 最后y = 0